Smooth adaptive hybrid impedance control for robotic contact force tracking in dynamic environments

Author:

Cao Hongli,He Ye,Chen Xiaoan,Zhao Xue

Abstract

Purpose The purpose of this paper is to take transient contact force response, overshoots and steady-state force tracking error problems into account to form an excellent force controller. Design/methodology/approach The basic impedance function with a pre-PID tuner is designed to improve the force response. A dynamic adaptive adjustment function that combines the advantages of hybrid impedance and adaptive hybrid impedance control is presented to achieve both force overshoots suppressing and tracking ability. Findings The introduced pre-PID tuner impedance function can achieve more than the pure impedance function in aspects of converging to the desired value and reducing the force overshoots. The performance of force overshoots suppression and force tracking error are maintained by introducing the dynamic adaptive sigma adjustment function. The simulation and experimental results both show the achieved control performance by comparing with the previous control methods. Practical implications The implementation of the controller is easy and convenient in practical manufacture scenes that require force control using industrial robots. Originality/value A superior robot controller adapting to a variety of complex tasks owing to the following characteristics: maintenance of high-accuracy position tracking capability in free-space (basic capabilities of modern industrial robots); maintenance of high speed, stability and smooth contact performance in collision stage; and presentation of high-precision force tracking capability in steady contact.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference33 articles.

1. Dynamic adaptive hybrid impedance control for dynamic contact force tracking in uncertain environments;IEEE Access,2019

2. Contact force control and vibration suppression in robotic polishing with a smart end effector;Robotics and Computer-Integrated Manufacturing,2019

3. Robotic grinding of a blisk with two degrees of freedom contact force control;The International Journal of Advanced Manufacturing Technology,2019

4. Contact impedance estimation for robotic systems;IEEE Transactions on Robotics,2005

5. Adaptive variable impedance control for dynamic contact force tracking in uncertain environment;Robotics and Autonomous Systems,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3