Optimization of Yeast Cultivation Factors for Improved SCP Production

Author:

Raita Svetlana1,Kusnere Zane1,Spalvins Kriss1,Blumberga Dagnija1

Affiliation:

1. Institute of Energy Systems and Environment , Riga Technical University , Azenes iela 12/1, LV–1048 Riga , Latvia

Abstract

Abstract Yeast Single-Cell Proteins (SCP) production using various agro-industrial byproducts and wastes have significant potential as an alternative to the soy meal, and fish meal protein used for livestock and aquaculture feeds. The use of organic wastes as a substrate in the fermentation processes can be accepted as one of the solutions to reduce the total price of the culture and an environmentally friendlier method of removing these residues. This review article focuses on the yeast biomass yield and protein content increase strategies, which is impossible without understanding metabolic pathways and switching mechanisms. The present work discusses optimization strategies for protein-enriched yeast biomass production, such as fermentation medium composition, including a selection of carbon and nitrogen sources and their ratio, supplemented trace elements, and cultivation conditions such as pH, temperature, time of cultivation, and inoculum size. This review summarizes the theoretical knowledge and experimental results of other researchers that provide an overview of the achievements of the last decades in the production of SCP.

Publisher

Walter de Gruyter GmbH

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3