Affiliation:
1. Facultad de Química e Ingeniería Química, Laboratorio de Bioprocesos y Tecnología de Fermentación Universidad Nacional Mayor de San Marcos Lima Peru
2. Department of Biotechnology Lorena School of Engineering, University of São Paulo (EEL/USP) Lorena Brazil
Abstract
AbstractCoffee is a crop of significant socioeconomic importance, and the reuse of agri‐food by‐products and biowaste has great potential across several industries. Coffee wastewater (CWW) is a valuable resource containing essential nutrients that can be utilized by Candida sorboxylosa for single‐cell protein (SCP) production. This utilization contributes to mitigating the negative impacts of agro‐industrial waste. The optimization of culture conditions using the design of experiments (DoE) technique is crucial in understanding the environmental factors influencing metabolite production. In our study, the DoE technique was employed to analyze culture conditions, including room temperature, pH 8.4, agitation at 200 rpm, a headspace of 60% (v/v), and an inoculum of 0.75 DO600nm over 28‐h period. This approach resulted in a remarkable SCP yield of 64.4% and dry cell weight (DCW) of 2.26 g/L. It is noteworthy that there is no literature reporting SCP production under alkaline pH conditions in yeast. Interestingly, our work demonstrated that an alkaline pH of 8.4 significantly influenced SCP production by C. sorboxylosa. The DoE technique proved to be an efficient statistical tool for optimizing culture conditions, offering several advantages, such as: (i) conducting cultures at room temperature to minimize unnecessary energy consumption; (ii) reducing the incubation time from 46 to 28 h, thereby enhancing overall productivity; (iii) achieving 1.7‐fold increase in SCP yield compared to previous basal production levels.
Funder
Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica
Fundação de Amparo à Pesquisa do Estado de São Paulo
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献