Sound Absorption: Dependence of Rubber Particles Impurities in Tyre Textile Fibre

Author:

Ružickij Robert1,Grubliauskas Raimondas1

Affiliation:

1. Vilnius Gediminas Technical University , Department of Environmental Protection and Water Engineering , Saulėtekio al. 11 , , Vilnius , Lithuania

Abstract

Abstract In recent years, the recycling of waste materials has become significant due to the movement of the European Union toward the Green Deal and the low impact on the environment. The paper studies the possibility of Waste Tyre Textile Fibre (WTTF) for sound absorption applications. WTTF is the material generated during the end-of-life tyre recycling process, which is separated from rubber and metal parts. In this study, three different types of WTTF samples were tested in which they consist of different levels of rubber impurities. In the first case, rubber particles make up to 10 % of total mass of WTTF (WTTF10), second – 54 % (WTTF54), and third – 70 % (WTTF70). The sound absorption tests were performed using the impedance tube using a two microphone technique, under the ISO 10534-2 standard. The results showed that increasing the level of rubber particles reduces the sound absorption performance of the WTTF. It was noticed that sound absorption of the sample WTTF10 reached 0.67 at low frequencies (500 Hz), while WTTF54 reached 0.31 and WTTF70 reached 0.21. It was concluded that WTTF10 samples had on average a 61 % higher sound absorption capacity compared to the other samples. The aim of the study was to determine the rubber particles impurities in WTTF dependence on sound absorption ability of the material.

Publisher

Walter de Gruyter GmbH

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3