Waste Tyre Textile Fibre Composite Material: Acoustic Performance and Life Cycle Assessment

Author:

Ružickij Robert1ORCID,Romagnoli Francesco2ORCID,Grubliauskas Raimondas1ORCID

Affiliation:

1. Department of Environmental Protection and Water Engineering, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania

2. Institute of Energy Systems and Environment, Riga Technical University, Āzenes iela 12-K1, LV-1048 Riga, Latvia

Abstract

The development of new sound absorbing materials and the transition to net zero emissions production have become inseparable. This paper investigates a new type of composite sound absorbing material made of waste tyre textile fibre (WTTF) and different binders: polyurethane resin (PU), polyvinyl acetate (PVA), and starch (POS). Non-acoustic and acoustic parameters were studied, and life cycle assessment was performed for the considered composite sound absorbing materials. The airflow resistivity was determined according to the ISO 9053-1 standard, while the sound absorption coefficient was determined according to the ISO 10534-2 standard, and the LCA was performed based on the ISO 14040 and ISO 14044 standards. Composite sound absorbing materials subjected to sound absorption coefficient tests showed results in the range of 0.04 to 0.99 and peaking in the frequency range of 800 to 2000 Hz, while airflow resistivity varied between 17.4 and 83.6 kPa⋅s/m2. The combination that gave the highest sound absorption coefficient was experimentally found to be PU composite material. Life cycle assessment results revealed that the lowest potential impact on the environment is obtained when composite materials are produced using starch as a binder and its total potential impact on the environment varied between 0.27 and 0.55 Pt, while the highest potential impact was observed by PU composites (0.33 ÷ 0.64 Pt). The results obtained experimentally and by LCA modelling revealed great attractiveness and promising development of composites using WTTF and different binders’ potential for sound absorbing applications.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3