Development of Composite Acoustic Panels of Waste Tyre Textile Fibres and Paper Sludge

Author:

Ružickij Robert1ORCID,Kizinievič Olga2ORCID,Grubliauskas Raimondas1,Astrauskas Tomas3ORCID

Affiliation:

1. Department of Environmental Protection and Water Engineering, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania

2. Laboratory of Composite Materials, Vilnius Gediminas Technical University, Linkmenų g. 28, 08217 Vilnius, Lithuania

3. Institute of Environmental Protection, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania

Abstract

Since society is moving towards sustainable development, interest in secondary use of waste has recently become significant. This paper investigates a process to develop an acoustic material, using two types of waste. Composite acoustic panels were developed using waste tyre textile fibres (WTTF) and paper sludge (PS), and polyvinyl acetate (PVA) were used as a binder. Non-acoustic (bulk density, airflow resistivity) and acoustic (sound absorption coefficient, sound transmission loss) parameters were studied. Composite acoustic panels with different proportions of WTTF/PS/PVA (sixteen samples) were subjected to testing for the sound absorption coefficient according to ISO 10534-2 and sound transmission loss according to ASTM E2611. The density of all samples varied between 155.2 and 709.9 kg/m3, the thickness between 14.4 and 20.5 mm, and the airflow resistivity between 29.5 and 101.5 kPa∙s/m2. The results reveal that the proportion of various waste materials in mixtures can improve the acoustic performance of panels. The combination that gives the highest αavg. with a value of 0.50 was experimentally found to be 70% WTTF mixed with 15% PVA and 15% H2O. The average sound absorption coefficient with a value of 0.46 was also found to be 25% WTTF mixed with 25% PS and 25% PVA and 25% H2O. In sound transmission loss, the most effective was 50% PS and the 50% PVA composite, the TLeq was 28.3 dB, while the composites together with 30% WTTF, 20% PS and 25% PVA, and 25% H2O showed 18.9 dB loss. The results obtained using WTTF and/or PS wastes are attractive and show great and promising development potential.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3