Effect of the yield surface evolution on the earing defect prediction

Author:

Akşen Toros A.ORCID,Firat MehmetORCID

Abstract

Although the prediction of earing in the cup drawing process is considerably related to the yield surface shape, the yield surface evolution is also essential for the final ear form. The bending-unbending issue is a fundamental subject occurring on the die and punch shoulders. Since the yield stress is loading path dependent in reversal loadings, the conventional hardening models used in the monotonic loading conditions bring about inaccurate outcomes for predicting the ultimate earing profile, and a kinematic hardening model should be incorporated into the constitutive equations. This study elucidates the yield surface evolution effect involving expansion and translation simultaneously on the ear formation. A sixth-order polynomial yield function was employed to precisely characterize the yield surface shape, while a combined isotropic-kinematic hardening model was implemented to represent the evolution of the yield surface. The translation of the yield surface position was defined by the Armstrong-Frederic hardening model. Punch force-stroke responses and the ear form profiles were predicted by the implemented plasticity model in Marc using the Hypela2 user subroutine and compared with the experimental results. The combined hardening assumption yielded an increase in the mean cup height when compared to the isotropic hardening assumption. Moreover, The HomPol6 coupled with the combined hardening showed a better agreement with the experimental results.

Publisher

Editorial CSIC

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3