Insulin resistance in obese adolescents affects the expression of genes associated with immune response

Author:

Minchenko Dmytro O.12

Affiliation:

1. Department of Pediatrics , Bohomolets National Medical University , Kyiv , Ukraine

2. Department of Molecular Biology, Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine , Kyiv , Ukraine

Abstract

Abstract Objective. The development of obesity and its metabolic complications is associated with dysregulation of various intrinsic mechanisms, which control basic metabolic processes through changes in the expression of numerous regulatory genes. Methods. The expression level of HLA-DRA, HLA-DRB1, HLA-G, HLA-F, and NFX1 genes as well as miR-190b was measured in the blood of obese adolescents without signs of resistance to insulin and with insulin resistance in comparison with the group of relative healthy control individuals without signs of obesity. Results. It was shown that obesity without signs of insulin resistance is associated with upregulation of the expression level of HLA-DRA and HLA-DRB1 genes, but with down-regulation of HLA-G gene expression in the blood as compared to control group of relative healthy adolescents. At the same time, no significant changes were observed in the expression level of HLA-F and NFX1 genes in the blood of this group of obese adolescents. Development of insulin resistance in obese individuals leads to significant down-regulation of HLA-DRA, HLA-DRB1, HLA-G, and HLA-F gene expressions as well as to up-regulation of NFX1 gene as well as microRNA miR-190b in the blood as compared to obese patients without signs of insulin resistance. Conclusions. Results of this study provide evidence that obesity affects the expression of the subset of genes related to immune response in the blood and that development of insulin resistance in obese adolescents is associated with strong down-regulation of the expressions of HLA-DRA, HLA-DRB1, HLA-F, and HLA-G genes, which may be contribute to the development of obesity complications. It is possible that transcription factor NFX1 and miR-190b participate in downregulation of HLA-DRA gene expression in the blood of obese adolescents with insulin resistance.

Publisher

Walter de Gruyter GmbH

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3