MOLECULAR BASIS OF THE DEVELOPMENT OF INSULIN RESISTANCE IN OBESE ADOLESCENT AND ADULT MEN

Author:

Viletska Y.,

Abstract

The aim of this work was to study the association between the expression of glucose metabolism related genes and insulin resistance, which expression is changed in obese adolescents and adult men with and without insulin resistance, for better understanding the molecular basis of the development of obesity complications and evaluation of possible contribution of these genes in development of insulin resistance. Methods. The expression level of genes related to glucose metabolism and their regulations was studied by real-time qPCR in adipose tissue and blood cells using SYBRGreen Mix and specific for each mRNA forward and reverse primers. Total RNA was extracted using TRIZOL reagent. For reverse transcription of mRNAs we used Thermo Scientific Verso cDNA Synthesis Kit (Germany). The values of mRNA expressions were normalized to the level of ACTB mRNA and represented as percent of control (100 %). Results. It was shown that in obese patients with insulin resistance the expression level of IRS1 (insulin receptor substrate 1), HK2 (hexokinase 2), PFKFB2 (6-phosphofructokinase/fructose-2,6-bisphosphatase 2) and PFKFB3 as well as circadian factors CLOCK and ARNTL genes in subcutaneous adipose tissue is significantly decreased as compared to obese men with normal sensitivity to insulin. At the same time, the development of insulin resistance in obese patients leads to up-regulation of PFKFB4, PER1, HSPA6, ALDH1A3, COL5A1, TIMP1, TIMP2, SPARC, and VCAN gene expressions in subcutaneous adipose tissue. The expression level of IGF1 (insulin-like growth factor 1) and IGFBP5 (IGF binding protein 5) as well as ENO1 (enolase 1) and ENO2 is down-regulated in the blood of obese adolescent with insulin resistance, but IGFBP2 and IGFBP7 gene expressions are significantly increased in these patients. Conclusions. The results of this investigation provide evidence that the development of insulin resistance in obese patients is associated with gene specific changes in the expression of many very important regulatory genes, which are endoplasmic reticulum stress responsible.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3