Affiliation:
1. Division of Clinical Pharmacology, Department of Pharmacology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
Abstract
Abstract
Recent studies have demonstrated relationships between the dysfunction of circadian clocks and the development of metabolic abnormalities, but the chicken-and-egg question remains unresolved. To address this issue, we investigated the cause-effect relationship in obese, diabetic ob/ob mice. Compared with control C57BL/6J mice, the daily mRNA expression profiles of the clock and clock-controlled genes Clock, Bmal1, Cry1, Per1, Per2, and Dbp were substantially dampened in the liver and adipose tissue, but not the hypothalamic suprachiasmatic nucleus, of 10-wk-old ob/ob mice. Four-week feeding of a low-calorie diet and administration of leptin over a 7-d period attenuated, to a significant and comparable extent, the observed metabolic abnormalities (obesity, hyperglycemia, hyperinsulinemia, and hypercholesterolemia) in the ob/ob mice. However, only leptin treatment improved the impaired peripheral clocks. In addition, clock function, assessed by measuring levels of Per1, Per2, and Dbp mRNA at around peak times, was also reduced in the peripheral tissues of 3-wk-old ob/ob mice without any overt metabolic abnormalities. Collectively these results indicate that the impairment of peripheral clocks in ob/ob mice does not result from metabolic abnormalities but may instead be at least partially caused by leptin deficiency itself. Further studies are needed to clarify how leptin deficiency affects peripheral clocks.
Cited by
120 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献