A Case-study: Temperature Distribution and Heat Penetration in Steam-air Retort, Using Glass Jars and Retort Pouches

Author:

Raits Evalds12,Pinte Lasma2,Kirse-Ozolina Asnate1,Muizniece-Brasava Sandra1

Affiliation:

1. Latvia University of Life Sciences and Technologies , 22 Riga Street , Jelgava , Latvia

2. Kronis Ltd., 8 Darznieku street , Bauska , Latvia

Abstract

Abstract Retort thermal sterilization of canned food is a technology, which allows preserving food products by applying heat on packaged food in retorts (autoclaves) at temperatures up to 121 °C. The thermodynamics of the processes in the retort are influenced by the product stacking method in the basket and packaging material. The aims of this study were: 1) to analyse and compare temperature distribution (TD) and the slowest to heat location in the steam-air retort stacked with glass jars and with retort pouches; 2) to analyse and compare commercial product heat penetration (HP) characteristics in glass jars and retort pouches. Temperature measurements were performed with wireless thermocouples. The come-up time (heating phase) required to achieve in the retort temperature uniformity criteria of ±0.5 °C, is 28 min when the retort is stacked with glass jars, and 24 min when the retort is stacked with retort pouches. Total calculated process time (holding phase), necessary to achieve the sterilization value (F0 of 3 min), for sample in glass jars was 67 min, but in retort pouches – 62 min. The overall sterilization process time difference between two considered packaging types was 9 min, which is significant amount of time in the context of commercial processing. The study clearly shows the necessity to perform the Temperature Distribution and Heat Penetration study, as each packaging material, stacking method and product will affect sterilization process thermodynamics and, therefore, the overall process time and consequently - the safety of food product.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences,Ecology,Geography, Planning and Development,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3