Outcomes of foliar iodine application on growth, minerals and antioxidants in tomato plants under salt stress

Author:

Fuentes José E. García1,Castellanos Biaani F. Herrera1,Martínez Erika N. Rivas2,Ortiz Willian A. Narváez1,Mendoza Adalberto Benavides1,Macías Julia Medrano1

Affiliation:

1. Departament of Horticulture , Autonomous Agrarian University Antonio Narro , Calzada Antonio Narro, 1920, Buenavista , Saltillo , Mexico

2. Departament of Botany , Autonomous Agrarian University Antonio Narro , Calzada Antonio Narro, 1920, Buenavista , Saltillo , Mexico

Abstract

Abstract Plant biostimulants have been used to reduce the damage caused by different types of biotic and abiotic stresses. Iodine (I) is a non-essential element in plants. Still, it is considered beneficial and a biostimulant, since exogenous application can enhance the redox metabolism, which improves antioxidants, synergies with essential minerals and increases tolerance to adverse factors. However, little is known about the mechanism of action of iodine; so, it is advantageous to undertake research that elucidates the impact of this element on plant physiology, which is expected to encourage the productive agricultural sector to use this element with additional biofortification benefit. The objective of this research was to evaluate the effect of foliar KIO3 applications every 15 days at 100 μM, on growth, mineral content and antioxidants in tomato plants grown under greenhouse conditions subjected to salinity stress (100 mM NaCl). The results showed that iodine did not mitigate the adverse impact of salinity on fresh or dry biomass but increased fruit production by 23%. A greater amount of N and Fe was also found in the leaves but not in the fruits; the same happened with the iodine concentration, which was high in the leaves of the treated plants but not in tomato fruits. The content of Ca and Mg in fruits was decreased in plants treated with iodine, as well as the activity of the GPX, lycopene and the antioxidant potential. None of the fruit quality variables were affected by salinity with or without application of iodine.

Publisher

Walter de Gruyter GmbH

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3