Neural Networks in the Educational Sector: Challenges and Opportunities

Author:

Fiore Ugo1

Affiliation:

1. Department of Management and Quantitative Studies , Parthenope University , Napoli , Italy

Abstract

Abstract Given their increasing diffusion, deep learning networks have long been considered an important subject on which teaching efforts should be concentrated, to support a fast and effective training. In addition to that role, the availability of rich data coming from several sources underlines the potential of neural networks used as an analysis tool to identify critical aspects, plan upgrades and adjustments, and ultimately improve learning experience. Analysis and forecasting methods have been widely used in this context, allowing policy makers, managers and educators to make informed decisions. The capabilities of recurring neural networks—in particular Long Short-Term Memory networks—in the analysis of natural language have led to their use in measuring the similarity of educational materials. Massive Online Open Courses provide a rich variety of data about the learning behaviors of online learners. The analysis of learning paths provides insights related to the optimization of learning processes, as well as the prediction of outcomes and performance. Another active area of research concerns the recommendation of suitable personalized, adaptive, learning paths, based on varying sources, including even the tracing of eye-path movements. In this way, the transition from passive learning to active learning can be achieved. Challenges and opportunities in the application of neural networks in the educational sector are presented.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3