Questions of Managing the Trajectory of E-Learning Using Neural Network Technologies

Author:

Shamsutdinova Tatyana1ORCID

Affiliation:

1. Bashkir State Agrarian University

Abstract

This article discusses the application of neural networks in managing the educational trajectory in electronic educational systems. A model of learning management in an electronic information and educational environment is built, and an algorithm for managing adaptive learning is described. A test example of a neural network is constructed, showing the capabilities and problems of applying neural networks to the tasks of constructing trajectories of students’ adaptive personalized training. The following stages of constructing a neural network model are implemented: determining the structure of a neural network and its software implementation using the PyTorch deep machine learning library; preparing a test training sample for training the neural network; importing the initial data for training the model using the modules of the Pandas library; training the model using torch.optim Adam, Adamax, and Rprop optimizers; visualizing the obtained data in the form of graphs based on the matplotlib library; exporting the obtained numerical results and analysing the data. The paper also states the problems of preparing a training data set for teaching a neural network. The paper concludes that using neural networks in the field of building personalized adaptive educational trajectories has great prospects and will be one of the urgent tasks in the coming years.

Publisher

Bryansk State Technical University BSTU

Reference13 articles.

1. Босов А.В. Применение самоорганизующихся нейронных сетей к процессу формирования индивидуальной траектории обучения // Информатика и ее применения. 2022. Т. 16. № 3. С. 7-15. DOI 10.14357/19922264220302. EDN HJQANN., Bosov A.V. Application of Self-Organizing Neural Networks to the Process of Forming an Individual Learning Path. Informatics and Applications. 2022;16(3):7-15. DOI 10.14357/19922264220302.

2. Чумакова Е.В., Корнеев Г.А., Гаспариан М.С. Разработка метода адаптивного тестирования на основе нейротехнологий // Открытое образование. 2022. Т. 26. № 2. С. 4-13. DOI 10.21686/1818-4243-2022-2-4-13. EDN XDVCKG., Chumakova E.V., Korneev G.A., Gasparian M.S. Development of Adaptive Testing Method Based on Neurotechnologies. Open Education. 2022;26(2):4-13. DOI 10.21686/1818-4243-2022-2-4-13.

3. Luo Q., Yang J. The Artificial Intelligence and Neural Network in Teaching. Computational intelligence and neuroscience. 2022;2022(1):1-11. DOI 10.1155/2022/1778562., Luo Q., Yang J. The Artificial Intelligence and Neural Network in Teaching. Computational Intelligence and Neuroscience. 2022;2022(1):1-11. DOI 10.1155/2022/1778562.

4. Okewu E., Adewole P., Misra S. et al. Artificial Neural Networks for Educational Data Mining in Higher Education: A Systematic Literature Review. Applied Artificial Intelligence. 2021;35(13):983-1021. DOI 10.1080/08839514.2021.1922847., Okewu E, Adewole P, Misra S, et al. Artificial Neural Networks for Educational Data Mining in Higher Education: A Systematic Literature Review. Applied Artificial Intelligence. 2021;35(13):983-1021. DOI 10.1080/08839514.2021.1922847.

5. Fiore U. Neural Networks in the Educational Sector: Challenges and Opportunities. Balkan Region Conference on Engineering and Business Education. 2019;1:332-337. DOI 10.2478/cplbu-2020-0039., Fiore U. Neural Networks in the Educational Sector: Challenges and Opportunities. Balkan Region Conference on Engineering and Business Education. 2019;1:332-337. DOI 10.2478/cplbu-2020-0039.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3