The Artificial Intelligence and Neural Network in Teaching

Author:

Luo Qun1ORCID,Yang Jiliang2ORCID

Affiliation:

1. Information Engineering Department, ChongQing City Vocational College, Yongchuan, ChongQing 402160, China

2. Henan Polytechnic Institute, Nanyang, Henan 473000, China

Abstract

This study aims to explore the application of artificial intelligence (AI) and network technology in teaching. By studying the AI-based smart classroom teaching mode and the advantages and disadvantages of network teaching using network technology and taking the mathematics classroom as an example, this study makes an intelligent analysis of the questioning link of classroom teachers in the teaching process. For the questions raised by teachers, the network classification models of convolutional neural network (CNN) and long short-term memory (LSTM) are used to classify the questions according to the content and types of questions and carry out experimental verification. The results show that the overall performance of the CNN model is better than that of the LSTM model in the classification results of the teacher’s question content dimension. CNN has higher accuracy, and the classification accuracy of essential knowledge points reaches 86.3%. LSTM is only 79.2%, and CNN improves by 8.96%. In the classification results of teacher question types, CNN has higher accuracy. The classification accuracy of the prompt question is the highest, reaching 87.82%. LSTM is only 83.2%, and CNN improves by 4.95%. CNN performs better in teacher question classification results.

Funder

Chongqing Municipal Education Commission

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3