Outlier Detection in Ocean Wave Measurements by Using Unsupervised Data Mining Methods

Author:

Mahmoodi Kumars1,Ghassemi Hassan1

Affiliation:

1. Amirkabir University of Technology , Tehran , Iran

Abstract

Abstract Outliers are considerably inconsistent and exceptional objects in the data set that do not adapt to expected normal condition. An outlier in wave measurements may be due to experimental and configuration errors, technical defects in equipment, variability in the measurement conditions, rare or unknown conditions such as tsunami, windstorm and etc. To improve the accuracy and reliability of an built ocean wave model, or to extract important and valuable information from collected wave data, detecting of outlying observations in wave measurements is very important. In this study, three typical outlier detection algorithms:Box-plot (BP), Local Distance-based Outlier Factor (LDOF), and Local Outlier Factor (LOF) methods are used to detect outliers in significant wave height (Hs) records. The historical wave data are taken from National Data Buoy Center (NDBC). Finally, those data points are considered as outlier identified by at least two methods which are presented and discussed. Then, Hs prediction has been modelled with and without the presence of outliers by using Regression trees (RTs).

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Ocean Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3