Application of artificial neural network models and random forest algorithm for estimation of fracture intensity from petrophysical data

Author:

Zaiery Marzieh,Kadkhodaie Ali,Arian MehranORCID,Maleki Zahra

Abstract

AbstractNatural fractures play an essential role in the characterization and modeling of hydrocarbon reservoirs. Modeling fractured reservoirs requires an understanding of fracture characteristics. Fractured zones can be detected by using seismic data, petrophysical logs, well tests, drilling mud loss history and core description. In this study, the feed-forward neural networks (FFNN), cascade feed forward neural networks (CFFN) and random forests (RF) were used to determine fracture density from petrophysical logs. The model performance was assessed using statistical measures including the root mean squared error (RMSE), coefficient of determination (R2), mean absolute error (MAE), Kling Gupta efficiency (KGE) and Willmott’s index (WI). Conventional good logs and full-bore micro-resistivity imaging data were available from three drilled wells of the Mozduran reservoir, Khangiran gas field. According to the findings of this research, the FFNN model showed a higher KGE and WI, and a higher correlation coefficient (R2) compared to the CFNN model. The CFNN model outperformed the FFNN model with lower neurons. The models' performance was also improved by increasing the number of neurons in the hidden layers from 8 to 35. The findings of this study demonstrate that the measured and FFNN calculated fracture intensity is in excellent agreement with image log results showing a correlation coefficient of 92%. The RF algorithm showed higher stability and robustness in predicting fracture intensity with a correlation coefficient of 93%. The results of this study can successfully be used as an aid in a more successful reservoir dynamic modeling and production data analysis.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3