Tsunami arrival time detection system applicable to discontinuous time series data with outliers

Author:

Lee Jun-Whan,Park Sun-Cheon,Lee Duk Kee,Lee Jong Ho

Abstract

Abstract. Timely detection of tsunamis with water level records is a critical but logistically challenging task because of outliers and gaps. Since tsunami detection algorithms require several hours of past data, outliers could cause false alarms, and gaps can stop the tsunami detection algorithm even after the recording is restarted. In order to avoid such false alarms and time delays, we propose the Tsunami Arrival time Detection System (TADS), which can be applied to discontinuous time series data with outliers. TADS consists of three algorithms, outlier removal, gap filling, and tsunami detection, which are designed to update whenever new data are acquired. After calibrating the thresholds and parameters for the Ulleung-do surge gauge located in the East Sea (Sea of Japan), Korea, the performance of TADS was discussed based on a 1-year dataset with historical tsunamis and synthetic tsunamis. The results show that the overall performance of TADS is effective in detecting a tsunami signal superimposed on both outliers and gaps.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3