EBSD Characterization of Bobbin Friction Stir Welding of AA6082-T6 Aluminium Alloy

Author:

Tamadon A.1ORCID,Pons D. J.1ORCID,Clucas D.1ORCID

Affiliation:

1. University of Canterbury , Department of Mechanical Engineering , Christchurch 8041 , New Zealand

Abstract

Abstract Electron Backscatter Diffraction (EBSD) was used to determine microstructural evolution in AA6082-T6 welds processed by the Bobbin Friction Stir Welding (BFSW). This revealed details of grain-boundaries in different regions of the weld microstructure. Different polycrystalline transformations were observed through the weld texture. The Stirring Zone (SZ) underwent severe grain fragmentation and a uniform Dynamic Recrystallisation (DRX). The transition region experienced stored strain which changed the grain size and morphology via sub-grain-boundary transformations. Other observations were of micro-cracks, the presence of oxidization, and the presence of strain hardening associated with precipitates. Flow-arms in welds are caused by DRX processes including shear, and low and high angle grain boundaries. Welding variables affect internal flow which affects microstructural integrity. The shear deformation induced by the pin causes a non-uniform thermal and strain gradient across the weld region, leading to formation of mixed state transformation of grain morphologies through the polycrystalline structure. The grain boundary mapping represents the differences in DRX mechanism I different regions of the weld, elucidates by the consequences of the thermomechanical nature of the weld. The EBSD micrographs indicated that the localised stored strain at the boundary regions of the weld (e.g. flow-arms) has a more distinct effect in emergence of thermomechanical nonuniformities within the DRX microstructure.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3