Effect of Pin Shape on Thermal History of Aluminum-Steel Friction Stir Welded Joint: Computational Fluid Dynamic Modeling and Validation

Author:

Bokov Dmitry OlegovichORCID,Jawad Mohammed Abed,Suksatan WanichORCID,Abdullah Mahmoud E.ORCID,Świerczyńska AleksandraORCID,Fydrych DariuszORCID,Derazkola Hamed AghajaniORCID

Abstract

This article studied the effects of pin angle on heat generation and temperature distribution during friction stir welding (FSW) of AA1100 aluminum alloy and St-14 low carbon steel. A validated computational fluid dynamics (CFD) model was implemented to simulate the FSW process. Scanning electron microscopy (SEM) was employed in order to investigate internal materials’ flow. Simulation results revealed that the mechanical work on the joint line increased with the pin angle and larger stir zone forms. The simulation results show that in the angled pin tool, more than 26% of the total heat is produced by the pin. Meanwhile, in other cases, the total heat produced by the pin was near 15% of the total generated heat. The thermo-mechanical cycle in the steel zone increased, and consequently, mechanical interlock between base metals increased. The simulation output demonstrated that the frictional heat generation with a tool without a pin angle is higher than an angled pin. The calculation result also shows that the maximum heat was generated on the steel side.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Feasibility study on dissimilar joint between Alclad AA2024–T3 and DC04 steel by friction stir welding;Materials Today Communications;2024-03

2. Investigation of Mechanical Properties on Underwater Friction Stir Welded AA7075 With Pure Copper Dissimilar Joints;Transactions of the Indian Institute of Metals;2024-01-21

3. Dissimilar welding of aluminium to steel: A review;Journal of Manufacturing Processes;2024-01

4. Investigation of the effect of loading angle on mixed-mode fatigue crack propagation of AA2024-T351 friction stir welded joint;International Journal on Interactive Design and Manufacturing (IJIDeM);2023-12-13

5. Cooling-assist friction stir welding: A case study on AA6068 aluminum alloy and copper joint;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2023-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3