Dissimilar Friction Stir Welding of AA2024 and AISI 1018: Microstructure and Mechanical Properties

Author:

Ahmed Mohamed M. Z.ORCID,Jouini NabilORCID,Alzahrani Bandar,Seleman Mohamed M. El-SayedORCID,Jhaheen Mohammad

Abstract

This study investigated the effect of the friction stir welding rotation rate and welding speed on the quality and properties of the dissimilar joints between aluminum and carbon steel. Plates of 4 mm thickness from both AA2024 and AISI 1018 were successfully friction stir butt welded at rotation speeds of 200, 250, and 300 rpm and welding speeds of 25, 50, and 75 mm/min. The joint quality was investigated along the top surface and the transverse cross-sections. Further investigation using scanning electron microscopy was conducted to assess the intermetallic layers and the grain refining in the stir zone. The mechanical properties were investigated using tensile testing for two samples for each weld that wire cut perpendicular to the welding direction and the hardness profiles were obtained along the transverse cross-section. Both the top surface and the transverse cross-section macrographs indicated defect free joints at a rotation rate of 250 rpm with the different welding speeds. The intermetallic compounds (IMCs) formation was significantly affected by the heat input, where there is no formation of IMCs at the Al/steel interfaces when higher traverse speed (75 mm/min) or lower rotation speed (200 rpm) were used, which gave the maximum tensile strength of about 230 MPa at the low rotation speed (200 rpm) along with 3.2% elongation. This is attributed to the low amount of heat input (22.32 J/mm) experienced. At the low traverse speed (25 mm/min and 250 rpm), a continuous layer of Al-rich IMCs FeAl3 is formed at the joint interface due to the high heat input experienced (79.5 J/mm). The formation of the IMCs facilitates fracture and reduced the tensile strength of the joint to about 98 MPa. The fracture mechanism was found to be of mixed mode and characterized by a cleavage pattern and dimples. The hardness profiles indicated a reduction in the hardness at the aluminum side and an increase at the steel side.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3