Detection of Microorganisms Onboard the International Space Station Using an Electronic Nose

Author:

Reidt Ulrich1,Helwig Andreas2,Müller Gerhard2,Plobner Lutz3,Lugmayr Veronika3,Kharin Sergey4,Smirnov Yuri4,Novikova Natalia4,Lenic Joachim5,Fetter Viktor1,Hummel Thomas1

Affiliation:

1. Airbus Defence and Space GmbH - Space Systems , Dept. TESXS Science Engineering , Friedrichshafen , Germany

2. Airbus Group Innovations , Airbus Central R&T, XRXG – Materials , Munich , Germany

3. Agrobiogen GmbH , Hilgertshausen , Germany

4. State Scientific Center of the Russian Federation - Institute of Biomedical Problems (IBMP) of the Russian Academy of Sciences , Moscow , Russia

5. Deutsches Zentrum für Luft- und Raumfahrt (DLR) , Bonn , Germany

Abstract

Abstract We report on the detection of microorganisms onboard the International Space Station (ISS) using an electronic nose we named the E-Nose. The E-Nose, containing an array of ten different metal oxide gas sensors, was trained on Earth to detect the four most abundant microorganisms that are known to exist onboard the ISS. To assess its performance in space, the E-Nose was brought to the ISS and three measurement campaigns were carried out in three different locations inside the ISS during a 5-month mission. At the end of this mission, all investigated locations were wiped with swabs, and the swabs and odor sensor signal data were sent back to Earth for an in-depth analysis in earthbound laboratories. The in-space measurements were compared with an odor database containing four organisms, but a consensus odor could not be identified. Microbiological results could not provide clues to the smell that was measured. The yeast Rhodotorula mucilaginosa was identified in the literature as the most probable candidate for the unknown odor. Further investigations showed that the smell of Rhodotorula mucilaginosa matches very well with the data obtained inside the ISS. Finally, Rhodotorula mucilaginosa DNA was identified in swabs taken from the sleeping cabin of the astronaut, which confirms the assumption that the yeast Rhodotorula mucilaginosa was actually measured in space by the E-Nose.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3