Fabrication of Al2O3/Al structure by nitric acid oxidation at room temperature

Author:

Iwata Takashi,Matsumoto Taketoshi,Terakawa Sumio,Kobayashi Hikaru

Abstract

AbstractA thick Al2O3/aluminum (Al) structure has been fabricated by oxidation of Al with 68wt% and 98wt% nitric acid (HNO3) aqueous solutions at room temperature. Measurements of the Al2O3 thickness vs. the oxidation time show that reaction and diffusion are the rate-determining steps for oxidation with 68wt% and 98wt% HNO3 solutions, respectively. Observation of transmission electron micrographs shows that the Al2O3 layer formed with 68wt% HNO3 has a structure with cylindrically shaped pores vertically aligned from the Al2O3 surface to the Al2O3/Al interface. Due to the porous structure, diffusion of HNO3 proceeds easily, resulting in the reaction-limited oxidation mechanism. In this case, the Al2O3/Al structure is considerably rough. The Al2O3 layer formed with 98wt% HNO3 solutions, on the other hand, possesses a denser structure without pores, and the Al2O3/Al interface is much smoother, but the thickness of the Al2O3 layer formed on crystalline Al regions is much smaller than that on amorphous Al regions. Due to the relatively uniform Al2O3 thickness, the leakage current density flowing through the Al2O3 layer formed with 68wt% HNO3 is lower than that formed with 98wt% HNO3.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3