Silencing of NAMPT leads to up-regulation of insulin receptor substrate 1 gene expression in U87 glioma cells

Author:

Tsymbal Daria O.1,Minchenko Dmytro O.12,Luzina Olena Y.1,Riabovol Olena O.1,Danilovskyi Serhiy V.1,Minchenko Oleksandr H.1

Affiliation:

1. Palladin Institute of Biochemistry , National Academy of Sciences of Ukraine , Kyiv , Ukraine

2. National Bohomolets Medical University , Kyiv , Ukraine

Abstract

Abstract Objective. The aim of the present study was to investigate the effect of adipokine NAMPT (nicotinamide phosphoribosyltransferase) silencing on the expression of genes encoding IRS1 (insulin receptor substrate 1) and some other proliferation related proteins in U87 glioma cells for evaluation of the possible significance of this adipokine in intergenic interactions. Methods. The silencing of NAMPT mRNA was introduced by NAMPT specific siRNA. The expression level of NAMPT, IGFBP3, IRS1, HK2, PER2, CLU, BNIP3, TPD52, GADD45A, and MKI67 genes was studied in U87 glioma cells by quantitative polymerase chain reaction. Anti-visfatin antibody was used for detection of NAMPT protein by Western-blot analysis. Results. It was shown that the silencing of NAMPT mRNA led to a strong down-regulation of NAMPT protein and significant modification of the expression of IRS1, IGFBP3, CLU, HK2, BNIP3, and MKI67 genes in glioma cells and a strong up-regulation of IGFBP3 and IRS1 and down-regulation of CLU, BNIP3, HK2, and MKI67 gene expressions. At the same time, no significant changes were detected in the expression of GADD45A, PER2, and TPD52 genes in glioma cells treated by siRNA specific to NAMPT. Furthermore, the silencing of NAMPT mRNA suppressed the glioma cell proliferation. Conclusions. Results of this investigation demonstrated that silencing of NAMPT mRNA with corresponding down-regulation of NAMPT protein and suppression of the glioma cell proliferation affected the expression of IRS1 gene as well as many other genes encoding the proliferation related proteins. It is possible that dysregulation of most of the studied genes in glioma cells after silencing of NAMPT is reflected by a complex of intergenic interactions and that NAMPT is an important factor for genome stability and regulatory mechanisms contributing to the control of glioma cell metabolism and proliferation.

Publisher

Walter de Gruyter GmbH

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3