Exposure to nanographene oxide induces gene expression dysregulation in normal human astrocytes

Author:

Rudnytska Olha V.1,Kulish Yuliia V.1,Khita Olena O.1,Minchenko Dmytro O.12,Tsymbal Dariia O.1,Viletska Yuliia M.1,Sliusar Myroslava Y.1,Trufanova Dariia D.1,Minchenko Oleksandr H.1

Affiliation:

1. Department of Molecular Biology , Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine , Kiev , Ukraine

2. Department of Pediatrics , National Bohomolets Medical University , Kyiv , Ukraine

Abstract

Abstract Objective. Nanographene oxide, an oxidation derivative of graphene, is considered to be one of the nanomaterials attractive for biomedical applications, although this nanomaterial is toxic. The increasing exploitation of graphene-based materials necessitates a comprehensive evaluation of the potential impact of these materials on the human health. Moreover, it is necessary to investigate in detail the mechanisms of its toxic effect on living cells particularly at the genome level. The present study aimed to evaluate the impact of low doses of nanographene oxide on the expression of key regulatory genes in normal human astrocytes. Methods. Normal human astrocytes, line NHA/TS, were exposed to low doses of nanographene oxide (1 and 4 ng/ml) for 24 h. RNA was extracted from the cells and used for cDNA synthesis. The expression levels of NAMPT, TSPAN13, BCAR3, BRCA1, PTGS2, P4HA1, and P4HA2 mRNAs as well as microRNAs were measured by quantitative polymerase chain reaction. Results. It was found that the low doses of nanographene oxide induced a dysregulation in the expression of the key regulatory genes in normal human astrocytes in dose-dependent (1 and 4 ng/ml) and gene-specific manner. Nanographene oxide also strongly suppressed the expression of NAMPT, BCAR3, and TSPAN13 genes and significantly up-regulated BRCA1, PTGS2, P4HA1, and P4HA2 ones with a more significant effect in P4HA1 and P4HA2 genes. The expression of miR-96-5p and miR-145-5p was also down-regulated in astrocytes treated with nanographene oxide in a dose-dependent manner. Conclusion. The data obtained demonstrate that the low doses of nanographene oxide disturbed the genome functions by changing the expression levels of key regulatory genes in gene-specific and dose-dependent manner. Moreover, a higher dose of nanographene oxide induced more pronounced changes in expression of genes indicating for both genotoxic and neurotoxic possible effects in the normal human astrocytes.

Publisher

Walter de Gruyter GmbH

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Reference55 articles.

1. Ahmadi H, Ramezani M, Yazdian-Robati R, Behnam B, Razavi Azarkhiavi K, Hashem Nia A, Mokhtarzadeh A, Matbou Riahi M, Razavi BM, Abnous K. Acute toxicity of functionalized single wall carbon nanotubes: A biochemical, histopathologic and proteomics approach. Chem Biol Interact 275, 196–209, 2017.10.1016/j.cbi.2017.08.00428807745

2. Aragon MJ, Topper L, Tyler CR, Sanchez B, Zychowski K, Young T, Herbert G, Hall P, Erdely A, Eye T, Bishop L, Saunders SA, Muldoon PP, Ottens AK, Campen MJ. Serum-borne bioactivity caused by pulmonary multi-walled carbon nanotubes induces neuroinflammation via blood-brain barrier impairment. Proc Natl Acad Sci USA 114, E1968–E1976, 2017.10.1073/pnas.1616070114534754128223486

3. Auf G, Jabouille A, Delugin M, Guerit S, Pineau R, North S, Platonova N, Maitre M, Favereaux A, Vajkoczy P, Seno M, Bikfalvi A, Minchenko D, Minchenko O, Moenner M. High epiregulin expression in human U87 glioma cells relies on IRE1a and promotes autocrine growth through EGF receptor. BMC Cancer 13, 597, 2013.10.1186/1471-2407-13-597387867024330607

4. Avitabile E, Bedognetti D, Ciofani G, Bianco A, Delogu LG. How can nanotechnology help the fight against breast cancer? Nanoscale 10, 11719–11731, 2018.10.1039/C8NR02796J29917035

5. Backes C, Behera RK, Bianco A, Casiraghi C, Doan H, Criado A, Galembeck F, Goldie S, Gravagnuolo AM, Hou HL, Kamali AR, Kostarelos K, Kumar V, Lee WH, Martsinovich N, Palermo V, Palma M, Pang J, Prato M, Samori P, Silvestri A, Singh S, Strano M, Wetzl C. Biomedical applications: general discussion. Faraday Discuss 227, 245–258, 2021.10.1039/D1FD90003J33877208

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3