An Improved Dynamic Surface Sliding Mode Method for Autonomous Cooperative Formation Control of Underactuated USVS with Complex Marine Environment Disturbances

Author:

Dong Zaopeng123ORCID,Qi Shijie13ORCID,Yu Min13,Zhang Zhengqi13ORCID,Zhang Haisheng13ORCID,Li Jiakang13,Liu Yang13

Affiliation:

1. Key Laboratory of High Performance Ship Technology ( Wuhan University of Technology ), Ministry of Education, Wuhan University of Technology , Wuhan , China

2. Science and Technology on Underwater Vehicle Technology Laboratory , Harbin Engineering University , Harbin , China

3. School of Naval Architecture, Ocean and Energy Power Engineering , Wuhan University of Technology , Wuhan , China

Abstract

Abstract In this paper, a novel dynamic surface sliding mode control (DSSMC) method, combined with a lateral velocity tracking differentiator (LVTD), is proposed for the cooperative formation control of underactuated unmanned surface vehicles (USVs) exposed to complex marine environment disturbances. Firstly, in view of the kinematic and dynamic models of USVs and the design idea of a virtual control law in a backstepping approach, the trajectory tracking control problem of USVs’ cooperative formation is transformed into a stabilisation problem of the virtual control law of longitudinal and lateral velocities. Then, aiming at the problem of differential explosion caused by repeated derivation in the process of backstepping design, the first-order low-pass filter about the virtual longitudinal velocity and intermediate state quantity of position is constructed to replace differential calculations during the design of the control law, respectively. In order to reduce the steady-state error when stabilising the virtual lateral velocity control law, the integral term is introduced into the design of the sliding mode surface with a lateral velocity error, and then the second-order sliding mode surface with an integral is structured. In addition, due to the problem of controller oscillation and the role of the tracking differentiator (TD) in active disturbance rejection control (ADRC), the LVTD is designed to smooth the state quantity of lateral velocity. Subsequently, based on the dynamic model of USV under complex marine environment disturbances, the nonlinear disturbance observer is designed to observe the disturbances and compensate the control law. Finally, the whole cooperative formation system is proved to be uniformly and ultimately bounded, according to the Lyapunov stability theory, and the stability and validity of the method is also verified by the simulation results.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3