Approaches to Heterogeneous Integration for Millimeter-Wave Applications

Author:

Efimov A. S.1ORCID

Affiliation:

1. JSC RPC "Istok" n. a. Shokin"

Abstract

Introduction. Enhanced performance of electronic systems can be achieved by heterogeneous integration of different semiconductor technologies. The benefits of heterogeneous integration become obvious when close connections between the devices are provided. The development of integration approaches, enabling functionality and improved performance, appears a relevant task for modern microwave microelectronics.Aim. Review of state-of-the-art and promising heterogeneous integration concepts and techniques in microwave microelectronics.Materials and methods. Eight integration approaches that ensure the connection of devices based on different semiconductor technologies for microwave frequencies are considered: monolithic heterogeneous integration, wafer bonding, micro-transfer printing, embedded chip assembly, print additive manufacturing, wire bonding, flip-chip, and hotvia. The integration approaches are analyzed in terms of their implementation specifics, advantages and disadvantages.Results. Monolithic heterogeneous integration and wafer bonding, as well as micro-transfer printing, despite the minimum interconnections, have a number of fundamental limitations. These limitations are related to the compatibility of various semiconductor technologies and the necessity of high technological capabilities. The technology of embedded chip assembly enables the variability of implementation techniques, which makes it possible to provide unique characteristics, e.g., due to the integration of magnetic materials. However, this approach is associated with a high complexity of integration technological processes. Flip-chip integration ensures minimal interconnect losses due to bump miniaturization. Hot-via, as a modification of flip-chip, provides for a better compatibility with microstrip type circuitry. Their further improvement and mass application largely depends on the development of technologies for the formation of low-pitch interconnections.Conclusion. The development of close integration approaches in microwave microelectronics is proceeding both in the monolithic direction, i.e., monolithic heterogeneous integration wafer bonding, as well as in the quasi-monolithic direction, i.e., micro-transfer printing, embedded chip assembly, print additive manufacturing, flip-chip, and hot-via. The conducted comparative analysis of the presented methods has practical application.

Publisher

St. Petersburg Electrotechnical University LETI

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3