Geometric Simulation and Descriptive Geometry

Author:

Сальков ,Sal'kov Nikolay

Abstract

Geometric simulation is creation of a geometric model, whose properties and characteristics in a varying degree determine the subject of investigation’s properties and characteristics. The geometric model is a special case of the mathematical model. The feature of the geometric model is that it will always be a geometric figure, and therefore, by its very nature, is visual. If the mathematical model is a set of equations, which says little to an ordinary engineer, the geometric model as representation of the mathematical model and as the geometric figure itself, enables to "see" this set. Any geometric model can be represented graphically. Graphical model of an object is a mapping of its geometric model onto a plane (or other surface). Therefore, the graphical model can be considered as a special case of the geometric model. Graphical models are very various – these are graphics, and graphical structures of immense complexity, reflecting spatial geometric figures. These are drawings of geometric figures, simulating processes of all kinds. The simulation goes on as follows. According to known geometric and differential criteria the geometric model is executed. Then a mathematical model is composed based on the geometric model, finally a computer program is compiled on the mathematical model. As a result of consideration in this paper the process of obtaining the geometric models of surface and linear forms for auto-roads it is possible to make a following conclusion. For geometric simulation and the consequent mathematical one the descriptive geometry involvement is vital. Just the descriptive geometry is used both on the initial and final stages of design.

Publisher

Infra-M Academic Publishing House

Reference40 articles.

1. Волошинов Д.В. О перспективах развития геометрии и ее инструментариях [Текст] / Д.В. Волошинов // Геометрия и графика. — 2016. — Т. 4. — № 2. — С. 37–47. — DOI: 10.12737/3844., Voloshinov D.V. O perspektivakh razvitiya geometrii i ee instrumentariyakh [On the prospects of the development of geometry and its instruments]. Geometriya i grafika [Geometry and Graphics]. 2016, V. 4, I. 2, pp. 37–47. DOI: 10.12737/3844.

2. Грязнов Я.А. Отсек каналовой поверхности как образ цилиндра в расслояемом образовании [Текст] / Я.А. Грязнов // Геометрия и графика. — 2013. — Т. 1. — № 1. — С. 17–19. — DOI: 10.12737/2077., Gryaznov Ya.A. Otsek kanalovoy poverkhnosti kak obraz tsilindra v rassloyaemom obrazovanii [Compartment as the image of the surface of a canal in the cylinder Stratifiable education]. Geometriya i grafika [Geometry and Graphics]. 2013, V. 1, I. 1, pp. 17–19. DOI: 10.12737/2077.

3. Жихарев Л.А. Обобщение на трехмерное пространство фракталов Пифагора и Коха. Часть 1 [Текст] / Л.А. Жихарев // Геометрия и графика. — 2015. — Т. 3. — № 3. — С. 24–37. — DOI: 10.12737/14417., Zhikharev L.A. Obobshchenie na trekhmernoe prostranstvo fraktalov Pifagora i Kokha [The generalization to three-dimensional space fractal Pythagoras and Koch]. Geometriya i grafika [Geometry and Graphics]. 2015, V. 3, I. 3, pp. 24–37. DOI: 10.12737/14417.

4. Иванов Г.С. Конструктивный способ исследования свойств параметрически заданных кривых [Текст] / Г.С. Иванов // Геометрия и графика. — 2013. — Т. 2. — № 3. — С. 3–6. — DOI: 10.12737/6518., Ivanov G.S. Konstruktivnyy sposob issledovaniya svoystv parametricheski zadannykh krivykh [A constructive way to study the properties of parametrically defined curves]. Geometriya i grafika [Geometry and Graphics]. 2013, V. 2, I. 3, pp. 3–6. DOI: 10.12737/6518.

5. Иванов Г.С. Конструирование технических поверхностей [Текст]: (математическое моделирование на основе нелинейных преобразований) / Г.С. Иванов. — М.: Машиностроение, 1987., Ivanov G.S. Konstruirovanie tekhnicheskikh poverkhnostey. (matematicheskoe modelirovanie na osnove nelineynykh preobrazovaniy) [Construction of technical surfaces (the mathematical modeling based on nonlinear transformations)]. Moscow, Mashinostroenie Publ., 1987.

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3