Generalization to Three-Dimensional Space Fractals of Pythagoras and Koch. Part I

Author:

Жихарев ,Zhikharev L.

Abstract

Fractals are geometric objects, each part of which is similar to the whole object, so that if we take a part and increase its size to the size of the whole object, it would be impossible to notice a difference. In other words, fractals are sets having scale invariance. In mathematics, they are associated primarily with non-differentiable functions. The concept of "fractal" (from the Latin "Fractus" meaning «broken») had been introduced by Benoit Mandelbrot (1924–2010), French and American mathematician, physicist, and economist. Mandelbrot had found that seemingly arbitrary fluctuations in price of goods have a certain tendency to change: it turned out that daily fluctuations are symmetrical with long-term price fluctuations. In fact, Benoit Mandelbrot applied his recursive (fractal) method to solve the problem. Since the last quarter of the nineteenth century, a large number of fractal curves and flat objects have been created; and methods for their application have been developed. From geometrical point of view, the most interesting fractals are "Koch snowflake" and "Pythagoras Tree". Two classes of analogues of the volumetric fractals were created with modern three-dimensional modeling program: "Fractals of growth” – like Pythagoras Tree, “Fractals of separation” – like Koch snowflake; the primary classification was developed, their properties were studied. Empiric data was processed with basic arithmetic calculations as well as with computer software. Among other things, for fractals of separation the task was to create an object with an infinite surface area, which in the future might acquire great importance for the development of the chemical and other industries.

Publisher

Infra-M Academic Publishing House

Reference20 articles.

1. Асмус В.Ф. Проблема интуиции в философии и математике [Текст] / В.Ф. Асмус. – М.: Мысль, 1965., Asmus V.F. Problema intuitsii v filosofii i matematike [The problem of intuition in philosophy and mathematics]. Moscow, Mysl Publ., 1965.

2. Баркетова К. Фрактал Дракон Хартера-Хейтуэя [Электронный ресурс] / К. Баркетова // Компьютерная графика. – 2013. – URL: http://grafika.me/node/85, Barketova K. Fractal-Drakon Harter-Heituey [Fractal Dragon Harter-Heituey]. Kompjuternaja grafika [Computer graphics], 2013. Available at: http://grafika.me/node/85

3. Berenschot Erwin J. W., Jansen Henri V., Niels R. Fabrication of 3D fractal structures using nanoscale anisotropic etching of single crystalline silicon // Journal of Micromechanics and Microengineering. – 2013. – Т. 23. – № 5., Berenschot Erwin J. W., Jansen Henri V. and Niels R. Fabrication of 3D fractal structures using nanoscale anisotropic etching of single crystalline silicon. Journal of Micromechanics and Microengineering. 2013, V. 23, I. 5.

4. Болотов В.Н. Обобщенная функция Кантора и переходное фрактальное рассеяние [Текст] / В.Н. Болотов // Журнал технической физики. – 2002. – Т. 72. – № 2. – С. 8–15., Bolotov V.N. Obobshjonnaja funktsija Kontora i perehodnoe fraktalnoe rassejanie [Generalized Cantor function and transition fractal scattering]. Zhurnal tehnicheskoj fiziki [Technical Physics Journal]. 2002, V. 72, I. 2, pp. 8–15.

5. Бондаренко М.Ю., Бондаренко С.В. Загадочный беспорядок: история фракталов и области их применения [Электронный ресурс] / М.Ю. Бондаренко, С.В. Бондаренко. – URL: http://www.3dnews.ru/754657, Bondarenko S. i M. Zagadochnyj besporyadok: istorija fraktalov i oblast ih primenenija [Mysterious disorder: history of fractals and their applications]. Available at: http://www.3dnews.ru/754657

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3