SYNTHETIC REPRESENTATION OF THE "OBLIQUE SYMMETRY" TRANSFORMATION USING THE EXAMPLE OF AN ELLIPSE

Author:

Rustamyan Vyacheslav1,Bayanov E.2,Slavin R.3

Affiliation:

1. Moscow Technological University

2. Novosibirsk State Technical University

3. Astrakhan State Technical University

Abstract

Geometric transformations play a pivotal role in computer graphics, determining the position and shape of objects. In machine learning, they are applied for processing and analyzing data, such as in images. In geometric surface modeling, they are utilized for the creation and transformation of three-dimensional forms. In physics, geometric transformations assist in describing the motion of objects in space and time. The aim of this work is to analyse and study the geometric transformation known as "oblique symmetry." Primarily, the article seeks to elucidate a number of important properties of this transformation, expanding the field of knowledge in perspective-affine correspondence. Throughout the study, the principal directions of oblique symmetry are identified, and their relationship with the axis and direction of the transformation is established. It is crucial to emphasise that the analysis makes it evident that the axis and the direction of symmetry are equivalent and interchangeable. Additionally, the article addresses the challenge of transforming an arbitrary ellipse, defined by its semi-axes, into a circle of equal area. In this context, a method is proposed to determine the axis and direction of oblique symmetry for a given ellipse. Based on the results obtained and the analysis conducted, the authors propose a geometric algorithm that provides the capacity to resolve positional problems in the field of descriptive geometry. This algorithm also offers a novel method for constructing ellipses with given semi-axes, which holds practical significance in various engineering and geometric issues. In the conclusion of the article, a specific example of applying the developed method is provided, clearly demonstrating its practical value and real capabilities in solving positional problems in the field of descriptive geometry. Moreover, directions for future research in the field of shape formation are suggested, utilising the "oblique symmetry" transformation in the spaces and .

Publisher

Infra-M Academic Publishing House

Subject

General Medicine

Reference26 articles.

1. Антонова И.В. Математическое описание частного случая квазивращения фокуса эллипса вокруг эллиптической оси [Текст] / И. В. Антонова, Е. В. Соломонова, Н. С. Кадыкова // Геометрия и графика. – 2021. – Т. 9. – № 1. – С. 39-45. – DOI 10.12737/2308-4898-2021-9-1-39-45., Antonova I.V. Solomonova E.V., Kadykova N.S. Matematicheskoye opisaniye chastnogo sluchaya kvazivrashcheniya fokusa ellipsa vokrug ellipticheskoy osi [Mathematical description of the special case of quasi-rotation of the focus of an ellipse around the elliptic axis]. Geometriya i grafika [Geometriya i grafika]. 2021, V. 9, I. 1, rr. 39-45. DOI: 10.12737/2308-4898-2021-9-1-39-45. (in Russian)

2. Баянов Е.В. Двумерное пространство, как основа геометрических построений [Текст] / Е.В. Баянов // Актуальные научные исследования в современном мире. – 2020. – № 8-1(64). – С. 122-124., Bayanov E.V. Dvumernoe prostranstvo, kak osnova geometricheskix postroenij [Two-dimensional space as the basis of geometric constructions]. Aktual`ny`e nauchny`e issledovaniya v sovremennom mire [Current scientific research in the modern world]. 2020, I. 8-1(64), rr. 122-124. (in Russian)

3. Беглов И.А. Формообразование поверхностей квазивращения n-ого порядка [Текст] / И.А. Беглов // Проблемы машиноведения: материалы IV Международной научно-технической конференции / научный редактор П.Д. Балакин. – Омск: Омский государственный технический университет, 2020. – С. 419-426., Beglov I.A. Formoobrazovanie poverxnostej kvazivrashheniya n-ogo poryadka [Formation of surfaces of quasi-rotation of the nth order]. Problemy mashinovedeniya: materialy IV Mezhdunarodnoj nauchno-texnicheskoj konferencii [Problems of mechanical engineering: materials of the IV International Scientific and Technical Conference]. Omsk, Omskij gosudarstvenny`j texnicheskij universitet, 2020, rr. 419-426. (in Russian)

4. Бермант А.Ф. Геометрический справочник по математике (Атлас кривых). Ч. 1. [Текст] / А.Ф. Бермант. —М.-Л.: ОНГИЗ НКТП, 1937. — 209 с., Bermant A.F. Geometricheskiy spravochnik po matematike (Atlas krivykh). CH. 1. [Geometric reference to mathematics (Atlas of curves). Part 1]. Moskov-Leningrad, ONGIZ NKTP Publ., 1937. 209 p. (in Russian)

5. Бойков А.А. Создание компьютерных моделей динамических каналовых поверхностей с помощью языка геометрических построений / А.А. Бойков // Вестник компьютерных и информационных технологий. – 2022. – Т. 19. – № 10(220). – С. 15-29. – DOI 10.14489/vkit.2022.10.pp.015-029., Bojkov A.A. Sozdanie komp`yuterny`x modelej dinamicheskix kanalovy`x poverxnostej s pomoshh`yu yazy`ka geometricheskix postroenij [Creation of computer models of dynamic channel surfaces using a language of geometric constructions]. Vestnik komp`yuterny`x i informacionny`x texnologij. [Bulletin of Computer and Information Technologies]. 2022, V. 19, I. 10(220), rr. 15-29. – DOI 10.14489/vkit.2022.10.pp.015-029. (in Russian)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3