Affiliation:
1. МИРЭА – Российский технологический университет
2. MIREA – Russian Technological University
3. Московский технологический университет
4. Moscow Technological University
Abstract
Previously, we developed a constructive method for modeling surfaces of rotation with axes, which were second-order curves such as circle, ellipse, parabola and hyperbola [1]. We also described the principle of constructing a mathematical model [23] corresponding to this constructive technique [2], and expressed the method in mathematical form. In this paper, we applied the previously developed mathematical model that allows us to determine the trajectory of rotation of a point around an elliptical axis to some special cases of the location of this point and identified the features of each of them. We applied the previously accepted terminology and the system of designating points, straight and curved lines involved in the search for circular trajectories of rotation of points. We analyzed the cases of the location of the generating point on the coordinate axes. We determined in mathematical form the trajectory of the point located in these positions. This entry is represented as systems of parametrically given equations. The article also describes a step-by-step algorithm used to find the equation of a circle, which is the trajectory of rotation of a point around an elliptic axis. We applied this algorithm to various positions of the generating point relative to the elliptic axis foci. We applied the previously developed criteria for selecting near and far centers of rotation relative to one of the focuses of the ellipse. The results of these mathematical studies will be used in the future to create a computer program capable of generating digital 3D-models of surfaces formed by the rotation of arbitrary sets forming points around the curves of the axes of the second order.
Publisher
Infra-M Academic Publishing House
Reference30 articles.
1. Беглов И.А. Метод вращения геометрических объектов вокруг криволинейной оси, [Текст] / И.А. Беглов, В.В Рустамян // Геометрия и графика. – 2017. – Т. 5. – № 3. – С. 45-50. — DOI: 10.12737/article_59bfa4eb0bf488.99866490., Beglov I.A. Metod vrashcheniya geometricheskih ob"ektov vokrug krivolinejnoj osi [The method of rotation of geometric objects around a curved axis]. Geometriya i grafika [Geometry and Graphics]. 2017, V. 5, I. 3, pp. 45–50. DOI: 10.12737/article_59bfa4eb0bf488.99866490. (in Russian)
2. Беглов И.А. Рустамян В.В. Антонова И.В. Математическое описание метода вращения точки вокруг криволинейной оси второго порядка, [Текст] / И.А. Беглов, В.В Рустамян, И.В. Антонова // Геометрия и графика. – 2019. – Т. 6. – № 4. – С. 39-46. — DOI: 10.12737/article_5c21f6e832b4d2.25216268., Beglov I.A. Rustamyan V.V. Antonova I.V. Matematicheskoe opisanie metoda vrashcheniya tochki vokrug krivolinejnoj osi vtorogo poryadka [A mathematical description of the method of rotation of a point around a curvilinear axis of the second order]. Geometriya i grafika [Geometry and Graphics]. 2019, V. 6, I. 4, pp. 39–46. DOI: 10.12737/article_5c21f6e832b4d2.25216268. (in Russian)
3. Беклемишев Д.В. Курс аналитической геометрии и линейной алгебры, [Текст]/ Д.В. Беклемишев, — М.: Физматлит, 2009. — 320с., Beklemishev D.V. Kurs analiticheskoj geometrii i linejnoj algebry [Course of analytic geometry and linear algebra]. Moscow: Fizmatlit Publ., 2009. 320 p. (in Russian)
4. Бермант А.Ф. Геометрический справочник по математике (Атлас кривых). Ч. 1. [Текст] / А.Ф. Бермант. — М.-Л.: ОНГИЗ НКТП, 1937. — 209 с., Bermant A.F. Geometricheskij spravochnik po matematike (Atlas krivyh) [Geometric Mathematics Reference (Atlas of Curves)]. Moscow: ONGIZ NKTP Publ., 1937. 209 p. (in Russian)
5. Выгодский М.Я. Справочник по элементарной математике [Текст] / М.Я. Выгодский, — М.: ACT: Астрель, 2001. —509с., Vygodskij M.Ya. Spravochnik po elementarnoj matematike [Handbook of elementary mathematics]. Moscow: ACT: Astrel' Publ., 2001. 509 p. (in Russian)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献