Novel Method for Three-Dimensional Facial Expression Recognition Using Self-Normalizing Neural Networks and Mobile Devices

Author:

Hartmann Tim Johannes12ORCID,Hartmann Julien Ben Joachim3,Friebe-Hoffmann Ulrike2,Lato Christiane2,Janni Wolfgang2,Lato Krisztian2

Affiliation:

1. Universitäts-Hautklinik Tübingen, Tübingen, Germany

2. Universitätsfrauenklinik Ulm, Ulm, Germany

3. Universität Stuttgart, Stuttgart, Germany

Abstract

Abstract Introduction To date, most ways to perform facial expression recognition rely on two-dimensional images, advanced approaches with three-dimensional data exist. These however demand stationary apparatuses and thus lack portability and possibilities to scale deployment. As human emotions, intent and even diseases may condense in distinct facial expressions or changes therein, the need for a portable yet capable solution is signified. Due to the superior informative value of three-dimensional data on facial morphology and because certain syndromes find expression in specific facial dysmorphisms, a solution should allow portable acquisition of true three-dimensional facial scans in real time. In this study we present a novel solution for the three-dimensional acquisition of facial geometry data and the recognition of facial expressions from it. The new technology presented here only requires the use of a smartphone or tablet with an integrated TrueDepth camera and enables real-time acquisition of the geometry and its categorization into distinct facial expressions. Material and Methods Our approach consisted of two parts: First, training data was acquired by asking a collective of 226 medical students to adopt defined facial expressions while their current facial morphology was captured by our specially developed app running on iPads, placed in front of the students. In total, the list of the facial expressions to be shown by the participants consisted of “disappointed”, “stressed”, “happy”, “sad” and “surprised”. Second, the data were used to train a self-normalizing neural network. A set of all factors describing the current facial expression at a time is referred to as “snapshot”. Results In total, over half a million snapshots were recorded in the study. Ultimately, the network achieved an overall accuracy of 80.54% after 400 epochs of training. In test, an overall accuracy of 81.15% was determined. Recall values differed by the category of a snapshot and ranged from 74.79% for “stressed” to 87.61% for “happy”. Precision showed similar results, whereas “sad” achieved the lowest value at 77.48% and “surprised” the highest at 86.87%. Conclusions With the present work it can be demonstrated that respectable results can be achieved even when using data sets with some challenges. Through various measures, already incorporated into an optimized version of our app, it is to be expected that the training results can be significantly improved and made more precise in the future. Currently a follow-up study with the new version of our app that encompasses the suggested alterations and adaptions, is being conducted. We aim to build a large and open database of facial scans not only for facial expression recognition but to perform disease recognition and to monitor diseases’ treatment progresses.

Publisher

Georg Thieme Verlag KG

Subject

Maternity and Midwifery,Obstetrics and Gynecology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3