Grundprinzipien der künstlichen Intelligenz in der Dermatologie erklärt am Beispiel des Melanoms

Author:

Hartmann Tim1ORCID,Passauer Johannes1,Hartmann Julien2,Schmidberger Laura1,Kneilling Manfred134,Volc Sebastian1ORCID

Affiliation:

1. Hautklinik Universitätsklinik Eberhard Karls Universität, Tübingen

2. Universität Stuttgart

3. Werner Siemens Imaging Center Department of Preclinical Imaging and Radiopharmacy Eberhard Karls University, Tübingen

4. Cluster of Excellence iFIT (EXC 2180) „Image‐Guided and Functionally Instructed Tumor Therapies“ Eberhard Karls Universität, Tübingen

Abstract

ZusammenfassungDer Einsatz von künstlicher Intelligenz (KI) setzt sich in den verschiedensten Bereichen der Medizin immer schneller durch. Dennoch fehlt vielen medizinischen Kollegen das technische Grundverständnis für die Funktionsweise dieser Technologie, was ihre Anwendung in Klinik und Forschung stark einschränkt. Daher möchten wir in dieser Übersichtsarbeit die Funktionsweise und Klassifizierung der KI am Beispiel des Melanoms erörtern, um ein Verständnis für die Technologie hinter der KI zu schaffen. Dazu werden ausführliche Illustrationen verwendet, die die Technologie schnell erklären. Bisherige Übersichten konzentrieren sich eher auf die potenziellen Anwendungen der KI und verpassen die Gelegenheit, ein tieferes Verständnis für die Materie herauszuarbeiten, das für die klinische Anwendung so wichtig ist. Das maligne Melanom ist zu einer erheblichen Belastung für die Gesundheitssysteme geworden. Bei frühzeitiger Entdeckung ist eine bessere Prognose zu erwarten, weshalb das Hautkrebs‐Screening immer populärer und von den Krankenkassen unterstützt wird. Die Zahl der Fachärzte ist jedoch begrenzt, was ihre Verfügbarkeit einschränkt und zu längeren Wartezeiten führt. Daher müssen innovative Ideen umgesetzt werden, um die notwendige Versorgung zu gewährleisten. Das maschinelle Lernen bietet die Möglichkeit, Melanome auf Bildern zu erkennen, und zwar auf einem Niveau, das mit dem von erfahrenen Dermatologen – unter optimierten Bedingungen – vergleichbar ist.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3