Affiliation:
1. Hautklinik Universitätsklinik Eberhard Karls Universität, Tübingen
2. Universität Stuttgart
3. Werner Siemens Imaging Center Department of Preclinical Imaging and Radiopharmacy Eberhard Karls University, Tübingen
4. Cluster of Excellence iFIT (EXC 2180) „Image‐Guided and Functionally Instructed Tumor Therapies“ Eberhard Karls Universität, Tübingen
Abstract
ZusammenfassungDer Einsatz von künstlicher Intelligenz (KI) setzt sich in den verschiedensten Bereichen der Medizin immer schneller durch. Dennoch fehlt vielen medizinischen Kollegen das technische Grundverständnis für die Funktionsweise dieser Technologie, was ihre Anwendung in Klinik und Forschung stark einschränkt. Daher möchten wir in dieser Übersichtsarbeit die Funktionsweise und Klassifizierung der KI am Beispiel des Melanoms erörtern, um ein Verständnis für die Technologie hinter der KI zu schaffen. Dazu werden ausführliche Illustrationen verwendet, die die Technologie schnell erklären. Bisherige Übersichten konzentrieren sich eher auf die potenziellen Anwendungen der KI und verpassen die Gelegenheit, ein tieferes Verständnis für die Materie herauszuarbeiten, das für die klinische Anwendung so wichtig ist. Das maligne Melanom ist zu einer erheblichen Belastung für die Gesundheitssysteme geworden. Bei frühzeitiger Entdeckung ist eine bessere Prognose zu erwarten, weshalb das Hautkrebs‐Screening immer populärer und von den Krankenkassen unterstützt wird. Die Zahl der Fachärzte ist jedoch begrenzt, was ihre Verfügbarkeit einschränkt und zu längeren Wartezeiten führt. Daher müssen innovative Ideen umgesetzt werden, um die notwendige Versorgung zu gewährleisten. Das maschinelle Lernen bietet die Möglichkeit, Melanome auf Bildern zu erkennen, und zwar auf einem Niveau, das mit dem von erfahrenen Dermatologen – unter optimierten Bedingungen – vergleichbar ist.