Affiliation:
1. Department of Dermatology University hospital Tübingen Tübingen Germany
2. University of Stuttgart, Germany
3. Werner Siemens Imaging Center Department of Preclinical Imaging and Radiopharmacy Eberhard Karls University Tübingen Germany
4. Cluster of Excellence iFIT (EXC 2180) “Image‐Guided and Functionally Instructed Tumor Therapies” Eberhard Karls University Tübingen Germany
Abstract
SummaryThe use of artificial intelligence (AI) continues to establish itself in the most diverse areas of medicine at an increasingly fast pace. Nevertheless, many healthcare professionals lack the basic technical understanding of how this technology works, which severely limits its application in clinical settings and research. Thus, we would like to discuss the functioning and classification of AI using melanoma as an example in this review to build an understanding of the technology behind AI. For this purpose, elaborate illustrations are used that quickly reveal the technology involved. Previous reviews tend to focus on the potential applications of AI, thereby missing the opportunity to develop a deeper understanding of the subject matter that is so important for clinical application. Malignant melanoma has become a significant burden for healthcare systems. If discovered early, a better prognosis can be expected, which is why skin cancer screening has become increasingly popular and is supported by health insurance. The number of experts remains finite, reducing their availability and leading to longer waiting times. Therefore, innovative ideas need to be implemented to provide the necessary care. Thus, machine learning offers the ability to recognize melanomas from images at a level comparable to experienced dermatologists under optimized conditions.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献