Towards Understanding the Usability Attributes of AI-Enabled eHealth Mobile Applications

Author:

Alzahrani Adel Saeed1ORCID,Gay Valerie1ORCID,Alturki Ryan2ORCID,AlGhamdi Mohammad J2ORCID

Affiliation:

1. School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney 2007, Australia

2. Department of Information Science, College of Computer and Information Systems, Umm Al-Qura University, Makkah, Saudi Arabia

Abstract

Mobile application (app) use is increasingly becoming an essential part of our daily lives. Due to their significant usefulness, people rely on them to perform multiple tasks seamlessly in almost all aspects of everyday life. Similarly, there has been immense progress in artificial intelligence (AI) technology, especially deep learning, computer vision, natural language processing, and robotics. These technologies are now actively being implemented in smartphone apps and healthcare, providing multiple healthcare services. However, several factors affect the usefulness of mobile healthcare apps, and usability is an important one. There are various healthcare apps developed for each specific task, and the success of these apps depends on their performance. This study presents a systematic review of the existing apps and discusses their usability attributes. It highlights the usability models, outlines, and guidelines proposed in previous research for designing apps with improved usability characteristics. Thirty-nine research articles were reviewed and examined to identify the usability attributes, framework, and app design conducted. The results showed that satisfaction, efficiency, and learnability are the most important usability attributes to consider when designing eHealth mobile apps. Surprisingly, other significant attributes for healthcare apps, such as privacy and security, were not among the most indicated attributes in the studies.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3