Mechanical Performance of a Polyaxial Locking Plate and the Influence of Screw Angulation in a Fracture Gap Model

Author:

Kaczmarek Jakub1,Bartkowiak Tomasz2ORCID,Schuenemann Riccarda1,Paczos Piotr2,Gapinski Bartosz2,Bogisch Sandra1,Unger Martin1

Affiliation:

1. AniCura Kleintierspezialisten Augsburg, Augsburg, Germany

2. Poznan University of Technology, Poznan, Poland

Abstract

Abstract Objective The aim of this study was to compare the locking compression plate (LCP) with polyaxial locking system (PLS) using single cycle to failure 4-point bending test and to investigate the behaviour of PLS with screws inserted mono- and polyaxially using cyclic fatigue test in two bending directions. Materials and Methods Tests were performed on bone surrogates in a fracture gap model. The 3.5 LCP and 3.5 PLS plates were tested in single cycle to failure. The 3.5 PLS plates with mono- and polyaxial screws were compared in a cyclic fatigue tests in two orthogonal directions. For both experiments, micro-computed tomography (CT) scans were performed pre- and post-testing to investigate the connections between the screw head and the plate hole. Means of forces and cycles needed to failure were statistically compared. Results The PLS plates were on average 30% weaker than LCP plates. Mode of failure was plate bending in the single cycle to failure tests, and plate breakage in the cyclic fatigue tests. Neither screw breakage nor loss of the screw–plate interface occurred. Mono- and polyaxial constructs performed similarly when loaded in the same direction. Micro-CT revealed no additional internal cracks in the plates or screws after testing. It also showed for both PLS and LCP that there was only partial contact of the screw head with the plate hole. Clinical Relevance PLS offers a durable locking system, even when the screws are placed polyaxially. The weaker bending properties of the PLS compared with LCP should be considered during preoperative planning.

Funder

AniCura GmbH—AniCura Research Found

Aesculap B. Braun Vet Care and DePuy Synthes

Publisher

Georg Thieme Verlag KG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3