AI technology for remote clinical assessment and monitoring

Author:

Zoppo Gianluca1,Marrone Francesco1,Pittarello Monica2,Farina Marco1,Uberti Alberto3,Demarchi Danilo1,Secco Jacopo1,Corinto Fernando1,Ricci Elia1

Affiliation:

1. Department of Electronic Engineering and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy

2. Department of Surgery 2, Clinica San Luca, Strada della Vetta 3, 10020, Torino, Italy

3. Department of Management Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy

Abstract

Objective: To report the clinical validation of an innovative, artificial intelligence (AI)-powered, portable and non-invasive medical device called Wound Viewer. The AI medical device uses dedicated sensors and AI algorithms to remotely collect objective and precise clinical data, including three-dimensional (3D) wound measurements, tissue composition and wound classification through the internationally recognised Wound Bed Preparation (WBP) protocol; this data can then be shared through a secure General Data Protection Regulation (GDPR)- and Health Insurance Portability and Accountability Act (HIPAA)-compliant data transfer system. This trial aims to test the reliability and precision of the AI medical device and its ability to aid health professionals in clinically evaluating wounds as efficiently remotely as at the bedside. Method: This non-randomised comparative clinical trial was conducted in the Clinica San Luca (Turin, Italy). Patients were divided into three groups: (i) patients with venous and arterial ulcers in the lower limbs; (ii) patients with diabetes and presenting with diabetic foot syndrome; and (iii) patients with pressure ulcers. Each wound was evaluated for area, depth, volume and WBP wound classification. Each patient was examined once and the results, analysed by the AI medical device, were compared against data obtained following visual evaluation by the physician and research team. The area and depth were compared with a Kruskal–Wallis one-way analysis of variations in the obtained distribution (expected p-value>0.1 for both tests). The WBP classification and tissue segmentation were analysed by directly comparing the classification obtained by the AI medical device against that of the testing physician. Results: A total of 150 patients took part in the trial. The results demonstrated that the AI medical device's AI algorithm could acquire objective clinical parameters in a completely automated manner. The AI medical device reached 97% accuracy against the WBP classification and tissue segmentation analysis compared with that performed in person by the physician. Moreover, data regarding the measurements of the wounds, as analysed through the Kruskal–Wallis technique, showed that the data distribution proved comparable with the other methods of measurement previously clinically validated in the literature (p=0.9). Conclusion: These findings indicate that remote wound assessment undertaken by physicians is as effective through the AI medical device as bedside examination, and that the device was able to assess wounds and provide a precise WBP wound classification. Furthermore, there was no need for manual data entry, thereby reducing the risk of human error while preserving high-quality clinical diagnostic data.

Publisher

Mark Allen Group

Subject

Nursing (miscellaneous),Fundamentals and skills

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3