The concept of AI-assisted self-monitoring for skeletal malocclusion

Author:

Zhang Hexian1ORCID,Liu Chao2,Yang Pingzhu1,Yang Sen1,Yu Qing2,Liu Rui1

Affiliation:

1. Department of Stomatology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China

2. Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China

Abstract

Background: Skeletal malocclusion is common among populations. Its severity often increases during adolescence, yet it is frequently overlooked. The introduction of deep learning in stomatology has opened a new avenue for self-health management. Methods: In this study, networks were trained using lateral photographs of 2109 newly diagnosed patients. The performance of the models was thoroughly evaluated using various metrics, such as sensitivity, specificity, accuracy, confusion matrix analysis, the receiver operating characteristic curve, and the area under the curve value. Heat maps were generated to further interpret the models' decisions. A comparative analysis was performed to assess the proposed models against the expert judgment of orthodontic specialists. Results: The modified models reached an impressive average accuracy of 84.50% (78.73%-88.87%), with both sex and developmental stage information contributing to the AI system’s enhanced performance. The heat maps effectively highlighted the distinct characteristics of skeletal class II and III malocclusion in specific regions. In contrast, the specialist achieved a mean accuracy of 71.89% (65.25%-77.64%). Conclusions: Deep learning appears to be a promising tool for assisting in the screening of skeletal malocclusion. It provides valuable insights for expanding the use of AI in self-monitoring and early detection within a family environment.

Funder

Army Medical University

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3