Sphingosine 1-Phosphate Stimulates Fibronectin Matrix Assembly Through a Rho-Dependent Signal Pathway

Author:

Zhang Qinghong1,Peyruchaud Olivier1,French Kelly J.1,Magnusson Magnus K.1,Mosher Deane F.1

Affiliation:

1. From the Departments of Medicine and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI.

Abstract

AbstractFibronectin matrix assembly is a cell-dependent process mediated by cell surface binding sites for the 70-kD N-terminal portion of fibronectin. We have shown that Rho-dependent cytoskeleton reorganization induced by lysophosphatidic acid (LPA) or the microtubule-disrupting agent nocodazole increases fibronectin binding (Zhang et al, Mol Biol Cell 8:1415, 1997). Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid implicated in mitogenesis and cytoskeletal remodelling. Both LPA and S1P are present in increased amounts in serum as compared with plasma as a result of platelet activation. Addition of S1P to human osteosarcoma MG63 cells or human foreskin fibroblasts increased cell-mediated binding and assembly of fibronectin. MG63 cells expressed the Edg-2 and Edg-4 G-protein–coupled receptors for bioactive lipids, whereas foreskin fibroblasts expressed Edg-2, Edg-3, and Edg-4. The stimulatory effect of S1P on the binding of fibronectin or the N-terminal 70-kD fragment of fibronectin was dynamic and due to increases in both the number and affinity of binding sites. The stimulation of 70-kD fragment binding by nanomolar S1P, like stimulation of binding by LPA or nocodazole, was blocked by inactivation of Rho with C3 exotoxin but not by pertussis toxin-mediated inactivation of Gi. These results indicate a common signal pathway leading to control of cellular fibronectin matrix assembly by bioactive lipids generated during blood coagulation.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3