Affiliation:
1. Katolieke Universiteit Leuven, Campus Gasthuisberg, Afdeling Farmakologie, Herestraat, B-3000 Leuven, Belgium
Abstract
On addition of [4,5-3H]sphinganine 1-phosphate to human fibroblast monolayers, the label was efficiently removed from the culture medium. In contrast with the reported stability of phosphorylated sphingenine in 3T3 cells [Desai, Zhang, Olivera, Mattie and Spiegel (1992). J. Biol. Chem. 267, 23122-23128] and B16 melanoma cells [Sadahira, Ruan, Hakomuri and Igarashi (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 9686-9690], sphinganine 1-phosphate appeared to be subjected to a fast and extensive metabolism in fibroblasts, the major pathways being cleavage and dephosphorylation. The first of these pathways, catalysed by sphingosine-phosphate lyase, resulted in the formation of labelled palmitaldehyde, which was recovered, mainly after oxidation, in glycerophospholipids in an ester bond. A smaller part of the palmitaldehyde was reduced and incorporated in alk(en)ylphospholipids. Dephosphorylation of spinganine 1-phosphate, a hitherto overlooked pathway catalysed by an unknown phosphatase(s), gave rise to sphinganine, which was converted by N-acylation into ceramide and then incorporated in spingomyelin and glycosphingolipids.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献