Sine tangent search algorithm enabled LeNet for cotton crop classification using satellite image

Author:

Bhamare Devyani Jadhav1,Pudi Ramesh2,Krishna Garigipati Rama3

Affiliation:

1. SRES’s Sanjivani College of Engineering, Kopargaon, India

2. Aditya College of Engineering, Surampalem, India

3. Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, India

Abstract

Economic growth of country largely depends on crop production quantity and quality. Among various crops, cotton is one of the major crops in India, where 23 percent of cotton gets exported to various other countries. To classify these cotton crops, farmers consume much time, and this remains inaccurate most probably. Hence, to eradicate this issue, cotton crops are classified using deep learning model, named LeNet in this research paper. Novelty of this paper lies in utilization of hybrid optimization algorithm, named proposed sine tangent search algorithm for training LeNet. Initially, hyperspectral image is pre-processed by anisotropic diffusion, and then allowed for further processing. Also, SegNet is deep learning model that is used for segmenting pre-processed image. For perfect and clear details of pre-processed image, feature extraction is carried out, wherein vegetation index and spectral spatial features of image are found accurately. Finally, cotton crop is classified from segmented image and features extracted, using LeNet that is trained by sine tangent search algorithm. Here, sine tangent search algorithm is formed by hybridization of sine cosine algorithm and tangent search algorithm. Then, performance of sine tangent search algorithm enabled LeNet is assessed with evaluation metrics along with Receiver Operating Characteristic (ROC) curve. These metrics showed that sine tangent search algorithm enabled LeNet is highly effective for cotton crop classification with superior values of accuracy of 91.7%, true negative rate of 92%, and true positive rate of 92%.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3