Precise Crop Classification of Hyperspectral Images Using Multi-Branch Feature Fusion and Dilation-Based MLP

Author:

Wu Haibin,Zhou Huaming,Wang AiliORCID,Iwahori YujiORCID

Abstract

The precise classification of crop types using hyperspectral remote sensing imaging is an essential application in the field of agriculture, and is of significance for crop yield estimation and growth monitoring. Among the deep learning methods, Convolutional Neural Networks (CNNs) are the premier model for hyperspectral image (HSI) classification for their outstanding locally contextual modeling capability, which facilitates spatial and spectral feature extraction. Nevertheless, the existing CNNs have a fixed shape and are limited to observing restricted receptive fields, constituting a simulation difficulty for modeling long-range dependencies. To tackle this challenge, this paper proposed two novel classification frameworks which are both built from multilayer perceptrons (MLPs). Firstly, we put forward a dilation-based MLP (DMLP) model, in which the dilated convolutional layer replaced the ordinary convolution of MLP, enlarging the receptive field without losing resolution and keeping the relative spatial position of pixels unchanged. Secondly, the paper proposes multi-branch residual blocks and DMLP concerning performance feature fusion after principal component analysis (PCA), called DMLPFFN, which makes full use of the multi-level feature information of the HSI. The proposed approaches are carried out on two widely used hyperspectral datasets: Salinas and KSC; and two practical crop hyperspectral datasets: WHU-Hi-LongKou and WHU-Hi-HanChuan. Experimental results show that the proposed methods outshine several state-of-the-art methods, outperforming CNN by 6.81%, 12.45%, 4.38% and 8.84%, and outperforming ResNet by 4.48%, 7.74%, 3.53% and 6.39% on the Salinas, KSC, WHU-Hi-LongKou and WHU-Hi-HanChuan datasets, respectively. As a result of this study, it was confirmed that the proposed methods offer remarkable performances for hyperspectral precise crop classification.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference37 articles.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3