Early-Season Crop Mapping by PRISMA Images Using Machine/Deep Learning Approaches: Italy and Iran Test Cases

Author:

Mirzaei Saham1ORCID,Pascucci Simone1,Carfora Maria Francesca2ORCID,Casa Raffaele3ORCID,Rossi Francesco4ORCID,Santini Federico1ORCID,Palombo Angelo1ORCID,Laneve Giovanni4ORCID,Pignatti Stefano1ORCID

Affiliation:

1. Institute of Methodologies for Environmental Analysis (IMAA), Italian National Research Council (CNR), C/da S. Loja, 85050 Tito Scalo, Italy

2. Istituto per le Applicazioni del Calcolo “Mauro Picone” (IAC), Italian National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy

3. Department of Agriculture and Forestry Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy

4. Scuola Ingegneria Aerospaziale (SIA), University of Rome “La Sapienza”, Via Salaria 851, 00138 Roma, Italy

Abstract

Despite its high importance for crop yield prediction and monitoring, early-season crop mapping is severely hampered by the absence of timely ground truth. To cope with this issue, this study aims at evaluating the capability of PRISMA hyperspectral satellite images compared with Sentinel-2 multispectral imagery to produce early- and in-season crop maps using consolidated machine and deep learning algorithms. Results show that the accuracy of crop type classification using Sentinel-2 images is meaningfully poor compared with PRISMA (14% in overall accuracy (OA)). The 1D-CNN algorithm, with 89%, 91%, and 92% OA for winter, summer, and perennial cultivations, respectively, shows for the PRISMA images the highest accuracy in the in-season crop mapping and the fastest algorithm that achieves acceptable accuracy (OA 80%) for the winter, summer, and perennial cultivations early-season mapping using PRISMA images. Moreover, the 1D-CNN algorithm shows a limited reduction (6%) in performance, appearing to be the best algorithm for crop mapping within operational use in cross-farm applications. Machine/deep learning classification algorithms applied on the test fields cross-scene demonstrate that PRISMA hyperspectral time series images can provide good results for early- and in-season crop mapping.

Funder

PRIS4VEG project

SAPP4VU project

Italian Space Agency

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3