Abstract
Multitemporal polarimetric synthetic aperture radar (PolSAR) has proven as a very effective technique in agricultural monitoring and crop classification. This study presents a comprehensive evaluation of crop monitoring and classification over an agricultural area in southwestern Ontario, Canada. The time-series RADARSAT-2 C-Band PolSAR images throughout the entire growing season were exploited. A set of 27 representative polarimetric observables categorized into ten groups was selected and analyzed in this research. First, responses and temporal evolutions of each of the polarimetric observables over different crop types were quantitatively analyzed. The results reveal that the backscattering coefficients in cross-pol and Pauli second channel, the backscattering ratio between HV and VV channels (HV/VV), the polarimetric decomposition outputs, the correlation coefficient between HH and VV channelρ ρHHVV, and the radar vegetation index (RVI) show the highest sensitivity to crop growth. Then, the capability of PolSAR time-series data of the same beam mode was also explored for crop classification using the Random Forest (RF) algorithm. The results using single groups of polarimetric observables show that polarimetric decompositions, backscattering coefficients in Pauli and linear polarimetric channels, and correlation coefficients produced the best classification accuracies, with overall accuracies (OAs) higher than 87%. A forward selection procedure to pursue optimal classification accuracy was expanded to different perspectives, enabling an optimal combination of polarimetric observables and/or multitemporal SAR images. The results of optimal classifications show that a few polarimetric observables or a few images on certain critical dates may produce better accuracies than the whole dataset. The best result was achieved using an optimal combination of eight groups of polarimetric observables and six SAR images, with an OA of 94.04%. This suggests that an optimal combination considering both perspectives may be valuable for crop classification, which could serve as a guideline and is transferable for future research.
Funder
National Natural Science Foundation of China
Canadian Space Agency SOAR-E Program
Subject
General Earth and Planetary Sciences
Reference62 articles.
1. Outgrowing the Earth: The Food Security Challenge in an Age of Falling Water Tables and Rising Temperatures;Brown,2005
2. Research advances of SAR remote sensing for agriculture applications: A review
3. The Contribution of ALOS PALSAR Multipolarization and Polarimetric Data to Crop Classification
4. Assessing future risks to agricultural productivity, water resources and food security: How can remote sensing help?;Thenkabail;Photogramm. Eng. Remote Sens.,2012
5. A new method for crop classification combining time series of radar images and crop phenology information
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献