Unsupervised Domain Adaptation with Adversarial Self-Training for Crop Classification Using Remote Sensing Images

Author:

Kwak Geun-HoORCID,Park No-WookORCID

Abstract

Crop type mapping is regarded as an essential part of effective agricultural management. Automated crop type mapping using remote sensing images is preferred for the consistent monitoring of crop types. However, the main obstacle to generating annual crop type maps is the collection of sufficient training data for supervised classification. Classification based on unsupervised domain adaptation, which uses prior information from the source domain for target domain classification, can solve the impractical problem of collecting sufficient training data. This study presents self-training with domain adversarial network (STDAN), a novel unsupervised domain adaptation framework for crop type classification. The core purpose of STDAN is to combine adversarial training to alleviate spectral discrepancy problems with self-training to automatically generate new training data in the target domain using an existing thematic map or ground truth data. STDAN consists of three analysis stages: (1) initial classification using domain adversarial neural networks; (2) the self-training-based updating of training candidates using constraints specific to crop classification; and (3) the refinement of training candidates using iterative classification and final classification. The potential of STDAN was evaluated by conducting six experiments reflecting various domain discrepancy conditions in unmanned aerial vehicle images acquired at different regions and times. In most cases, the classification performance of STDAN was found to be compatible with the classification using training data collected from the target domain. In particular, the superiority of STDAN was shown to be prominent when the domain discrepancy was substantial. Based on these results, STDAN can be effectively applied to automated cross-domain crop type mapping without analyst intervention when prior information is available in the target domain.

Funder

Inha University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3