ChinaSoyArea10m: a dataset of soybean-planting areas with a spatial resolution of 10 m across China from 2017 to 2021

Author:

Mei QinghangORCID,Zhang Zhao,Han Jichong,Song Jie,Dong Jinwei,Wu HuaqingORCID,Xu Jialu,Tao Fulu

Abstract

Abstract. Soybean, an essential food crop, has witnessed a steady rise in demand in recent years. There is a lack of high-resolution annual maps depicting soybean-planting areas in China, despite China being the world's largest consumer and fourth-largest producer of soybean. To address this gap, we developed the novel Regional Adaptation Spectra-Phenology Integration method (RASP) based on Sentinel-2 remote sensing images from the Google Earth Engine (GEE) platform. We utilized various auxiliary data (e.g., cropland layer, detailed phenology observations) to select the specific spectra and indices that differentiate soybeans most effectively from other crops across various regions. These features were then input for an unsupervised classifier (K-means), and the most likely type was determined by a cluster assignment method based on dynamic time warping (DTW). For the first time, we generated a dataset of soybean-planting areas across China, with a high spatial resolution of 10 m, spanning from 2017 to 2021 (ChinaSoyArea10m). The R2 values between the mapping results and the census data at both the county and prefecture levels were consistently around 0.85 in 2017–2020. Moreover, the overall accuracy of the mapping results at the field level in 2017, 2018, and 2019 was 77.08 %, 85.16 %, and 86.77 %, respectively. Consistency with census data was improved at the county level (R2 increased from 0.53 to 0.84) compared to the existing 10 m crop-type maps in Northeast China (Crop Data Layer, CDL) based on field samples and supervised classification methods. ChinaSoyArea10m is very spatially consistent with the two existing datasets (CDL and GLAD (Global Land Analysis and Discovery) maize–soybean map). ChinaSoyArea10m provides important information for sustainable soybean production and management as well as agricultural system modeling and optimization. ChinaSoyArea10m can be downloaded from an open-data repository (DOI: https://doi.org/10.5281/zenodo.10071427, Mei et al., 2023).

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Reference74 articles.

1. Ahmed, M., Seraj, R., and Islam, S. M. S.: The k-means Algorithm: A Comprehensive Survey and Performance Evaluation, Electronics, 9, 1295, https://doi.org/10.3390/electronics9081295, 2020.

2. Arthur, D. and Vassilvitskii, S.: k-means++: The advantages of careful seeding, Stanford InfoLab Technical Report, No. 2006-13, Stanford University, http://ilpubs.stanford.edu:8090/778/ (last access: 3 July 2024), 2006.

3. Bach, F. and Jordan, M.: Learning Spectral Clustering, in: Advances in Neural Information Processing Systems, Proceedings of the 16th International Conference on Neural Information Processing Systems (NIPS 2003), Vancouver, Canada, 9–12 December 2003, MIT Press, https://proceedings.neurips.cc/paper_files/paper/2003/file/d04863f100d59b3eb688a11f95b0ae60-Paper.pdf (last access: 3 July 2024), 2003.

4. Chabalala, Y., Adam, E., and Ali, K. A.: Machine Learning Classification of Fused Sentinel-1 and Sentinel-2 Image Data towards Mapping Fruit Plantations in Highly Heterogenous Landscapes, Remote Sens., 14, 2621, https://doi.org/10.3390/rs14112621, 2022.

5. Chen, D., Huang, J., and Jackson, T. J.: Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near- and short-wave infrared bands, Remote Sens. Environ., 98, 225–236, https://doi.org/10.1016/j.rse.2005.07.008, 2005.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3