Multi-scale deep learning and optimal combination ensemble approach for AQI forecasting using big data with meteorological conditions

Author:

Wang Zicheng1,Chen Huayou1,Zhu Jiaming2,Ding Zhenni1

Affiliation:

1. School of Mathematical Sciences, Anhui University, Hefei, China

2. School of Internet, Anhui University, Hefei, China

Abstract

Faced with the rapid update of nonlinear and irregular big data from the environmental monitoring system, both the public and managers urgently need reliable methods to predict possible air pollutions in the future. Therefore, a multi-scale deep learning (MDL) and optimal combination ensemble (OCE) approach for hourly air quality index (AQI) forecasting is proposed in this paper, named MDL-OCE model. Before normal modeling, all original data are preprocessed through missing data filling and outlier testing to ensure smooth computation. Due to the complexity of such big data, slope-based ensemble empirical mode decomposition (EEMD) is adopted to decompose the time series of AQI and meteorological conditions into a finite number of simple intrinsic mode function (IMF) components and one residue component. Then, to unify the number of components of different variables, the fine-to-coarse (FC) technique is used to reconstruct all components into high frequency component (HF), low frequency component (LF), and trend component (TC). For purpose of extracting the underlying relationship between AQI and meteorological conditions, the three components are respectively trained and predicted by different deep learning architectures (stacked sparse autoencoder (SSAE)) with a multilayer perceptron (MLP). The corresponding forecasting results of three components are merged by OCE method to better achieve the ultimate AQI forecasting outputs. The empirical results clearly demonstrate that our proposed MDL-OCE model outperforms other advanced benchmark models in terms of forecasting performances in all cases.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3