Prediction of air quality index based on the SSA-BiLSTM-LightGBM model

Author:

Zhang Xiaowen,Jiang Xuchu,Li Ying

Abstract

AbstractThe air quality index (AQI), as an indicator to describe the degree of air pollution and its impact on health, plays an important role in improving the quality of the atmospheric environment. Accurate prediction of the AQI can effectively serve people’s lives, reduce pollution control costs and improve the quality of the environment. In this paper, we constructed a combined prediction model based on real hourly AQI data in Beijing. First, we used singular spectrum analysis (SSA) to decompose the AQI data into different sequences, such as trend, oscillation component and noise. Then, bidirectional long short-term memory (BiLSTM) was introduced to predict the decomposed AQI data, and a light gradient boosting machine (LightGBM) was used to integrate the predicted results. The experimental results show that the prediction effect of SSA-BiLSTM-LightGBM for the AQI data set is good on the test set. The root mean squared error (RMSE) reaches 0.6897, the mean absolute error (MAE) reaches 0.4718, the symmetric mean absolute percentage error (SMAPE) reaches 1.2712%, and the adjusted R2 reaches 0.9995.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference22 articles.

1. He, R. R., Zhu, L. B. & Zhou, K. S. Spatial autocorrelation analysis of air quality index (AQI) in eastern China based on residuals of time series models. Acta Sci. Circumst. 37, 2459–2467 (2017).

2. Sigamani, S. & Venkatesan, R. Air quality index prediction with influence of meteorological parameters using machine learning model for IoT application. Arab. J. Geosci. 15(4), 1–12 (2022).

3. Jiao, D. F. & Sun, Z. H. Regression analysis of air quality index. Period. Ocean Univ. China 48(S2), 228–234 (2018).

4. Yang, X. et al. A long-term prediction model of Beijing haze episodes using time series analysis. Comput. Intell. Neurosci. 2016, 1–7 (2016).

5. Zhang, C., Bai, Y., University N C. Application of LSTM prediction model based on tensor flow in Taiyuan air quality AQI index. J. Chongqing Univ. Technol. 32(08), 137–141 (2018).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3