Airline flight delays using artificial intelligence in COVID-19 with perspective analytics

Author:

Faiza 1,Khalil K.1

Affiliation:

1. School of Transportation and Logistics, Malaysia University of Science and Technology, Kota Damansara, Petaling Jaya, Selangor, Malaysia

Abstract

This study envisages assessing the effects of the COVID-19 on the on-time performance of US-airlines industry in the disrupted situations. The deep learning techniques used are neural network regression, decision forest regression, boosted decision tree regression and multi class logistic regression. The best technique is identified. In the perspective data analytics, it is suggested what the airlines should do for the on-time performance in the disrupted situation. The performances of all the methods are satisfactory. The coefficient of determination for the neural network regression is 0.86 and for decision forest regression is 0.85, respectively. The coefficient of determination for the boosted decision tree is 0.870984. Thus boosted decision tree regression is better. Multi class logistic regression gives an overall accuracy and precision of 98.4%. Recalling/remembering performance is 99%. Thus multi class logistic regression is the best model for prediction of flight delays in the COVID-19. The confusion matrix for the multi class logistic regression shows that 87.2% flights actually not delayed are predicted not delayed. The flights actually not delayed but wrongly predicted delayed are12.7%. The strength of relation with departure delay, carrier delay, late aircraft delay, weather delay and NAS delay, are 94%, 53%, 35%, 21%, and 14%, respectively. There is a weak negative relation (almost unrelated) with the air time and arrival delay. Security delay and arrival delay are also almost unrelated with strength of 1% relationship. Based on these diagnostic analytics, it is recommended as perspective to take due care reducing departure delay, carrier delay, Late aircraft delay, weather delay and Nas delay, respectively, considerably with effect of 94%, 53%, 35%, 21%, and 14% in disrupted situations. The proposed models have MAE of 2% for Neural Network Regression, Decision Forest Regression, Boosted Decision Tree Regression, respectively, and, RMSE approximately, 11%, 12%, 11%, respectively.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of flight delay using deep operator network with gradient-mayfly optimisation algorithm;Expert Systems with Applications;2024-08

2. Machine learning-based model for predicting arrival time of container ships;Journal of Intelligent & Fuzzy Systems;2024-05-07

3. Beyond the Horizon;Advances in Logistics, Operations, and Management Science;2024-03-22

4. Machine Learning-Based Prediction of Flight Punctuality and Delays;2023 7th IEEE Congress on Information Science and Technology (CiSt);2023-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3