Machine learning-based model for predicting arrival time of container ships

Author:

Nguyen Manh Hung1,Van Nguyen Hong1,Tran Van Quan1

Affiliation:

1. University of Transport Technology, Thanh Xuan, Hanoi, Vietnam

Abstract

Forecasting container ship arrival times is challenging, requiring a thorough analysis for accuracy. This study investigates the effectiveness of machine learning (ML) techniques in maritime transportation. Using a dataset of 581 samples with 8 input variables and 1 output variable (arrival time), ML models are constructed. The Pearson correlation matrix reduces input variables to 7 key factors: freight forwarder, dispatch location, loading and discharge ports, post-discharge location, dispatch day of the week, and dispatch week. The ranking of ML performance for predicting the arrival time of container ships can be arranged in descending order as GB-PSO >  XGB >  RF >  RF-PSO >  GB >  KNN >  SVR. The best ML model, GB-PSO, demonstrates high accuracy in predicting the arrival time of container ships, with R2 = 0.7054, RMSE = 7.4081 days, MAE = 5.1891 days, and MAPE = 0.0993% for the testing dataset. This is a promising research outcome as it seems to be the first time that an approach involving the use of minimal and easily collectible input factors (such as freight forwarder, dispatch time and place, port of loading, post port of discharge, port of discharge) and the combination of a machine learning model has been introduced for predicting the arrival time of container ships.

Publisher

IOS Press

Reference34 articles.

1. A systematic literature review on humanitarian logistics using network analysis and topic modeling;Kim;Asian J. Shipp. Logist.,2022

2. tasks as a contributory factor to maritime accidents: Asocio-cultural approach;Rajapakse;Asian J. Shipp. Logist.

3. Ship, port and supply chain security concepts interlinking maritime with hinterland transport chains;Blümel;WMU J. Marit. Aff.,2008

4. Across the pond: container shipping on the North Atlantic in the era of globalisation;Slack;GeoJournal,1999

5. Robust berth scheduling with uncertain vessel delay and handling time;Xu;Ann. Oper. Res.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3